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0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;
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Ronnie Brown’s influence on mathematics is huge.

At heart a homotopy theorist,
he tended to ask questions that have a very nice categorical answer.

I believe questions are what makes mathematics.

My aim today is to talk about two such questions which were originally asked by him:

§ What is a double crossed module?
The answer is: a crossed square, which is a “crossed modules of crossed modules”,
closely related to the non-abelian tensor product, developed in joint work with Loday;

§ What is a double central extension?
Here the answer, due to George Janelidze, is:
a “double extension, central relative to central extensions”;
these appear in the Hopf formulae for homology and are classified by cohomology.
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What is a double crossed module?



4. Crossed squares [BL87, GWL81, Lod82]

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

A crossed square is a commuting square in the category Gp of groups

, with

§ actions of L on M, N and P
(of M on P and N via µ, of N on M and P via ν)

§ and a function h : M ˆ N Ñ P

such that for all ℓ P L, m, m1 P M, n, n1 P N and p P P:

X0 h(mm1, n) = mh(m1, n)h(m, n) and h(m, nn1) = h(m, n)nh(m, n1);

X1 pM and pN are L-equivariant, and with the given actions, (µ : M Ñ L), (ν : N Ñ L)
and (µ˝pM = ν˝pN : P Ñ L) are crossed modules;

X2 pM(h(m, n)) = mnm´1 and pN(h(m, n)) = mnn´1;

X3 h(pM(p), n) = pnp´1 and h(m, pN(p)) = mpp´1;

X4 ℓh(m, n) = h(ℓm, ℓn).

Morphisms are natural transformations, compatible with the actions and with the map h.
Crossed squares and morphisms between them form the category XSqr.
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5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension;

M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;

and M2 is equivalent to the condition that this reflexive graph is an internal category.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



4. Crossed squares [BL87, GWL81, Lod82]

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

A crossed square is a commuting square in the category Gp of groups, with

§ actions of L on M, N and P
(of M on P and N via µ, of N on M and P via ν)

§ and a function h : M ˆ N Ñ P

such that for all ℓ P L, m, m1 P M, n, n1 P N and p P P:

X0 h(mm1, n) = mh(m1, n)h(m, n) and h(m, nn1) = h(m, n)nh(m, n1);

X1 pM and pN are L-equivariant, and with the given actions, (µ : M Ñ L), (ν : N Ñ L)
and (µ˝pM = ν˝pN : P Ñ L) are crossed modules;

X2 pM(h(m, n)) = mnm´1 and pN(h(m, n)) = mnn´1;

X3 h(pM(p), n) = pnp´1 and h(m, pN(p)) = mpp´1;

X4 ℓh(m, n) = h(ℓm, ℓn).

Morphisms are natural transformations, compatible with the actions and with the map h.
Crossed squares and morphisms between them form the category XSqr.



6. In which sense is a crossed square a “double crossed module”?

A roundabout answer is that XSqr » Cat(Cat(Gp)):
crossed squares are equivalent to
double internal categories (= internal double categories)
via the (de)normalisation procedure applied twice.

Z

����

,2
,2 M ¸ Llr

dM

��

cM

��
N ¸ L

LR

dN ,2

cN
,2 L

eM

LR

eNlr

In order for the more direct XSqr » XMod(XMod(Gp)) to make sense,
we need to understand what is an internal crossed module.

We define XMod(X ) » Cat(X ) where X is a semi-abelian category;
we see that XMod » XMod(Gp).

Since XMod(X ) is again semi-abelian,
we may put XSqr(X ) – XMod(XMod(X )) and obtain XSqr » XSqr(Gp).

We recall what are semi-abelian categories, and how to define internal actions.
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we need to understand what is an internal crossed module.

We define XMod(X ) » Cat(X ) where X is a semi-abelian category;
we see that XMod » XMod(Gp).

Since XMod(X ) is again semi-abelian,
we may put XSqr(X ) – XMod(XMod(X )) and obtain XSqr » XSqr(Gp).

We recall what are semi-abelian categories, and how to define internal actions.



7. The context: semi-abelian categories [JMT02, PVdL24]

Semi-abelian categories may be described in terms of “good behaviour”
of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p˝i where i normal mono (= kernel) and p normal epi
can be written as m˝e with e normal epi and m normal mono;

§ whenever M k ,2X
d ,2L
s

lr where k = ker(d) and d˝s = 1L,

k and s are jointly extremal-epic. Hence d = coker(k).

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .
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8. Cosmash products, commutators and actions [MM10, CJ03, HVdL13]
In a semi-abelian category X , any two objects X and Y induce a short exact sequence

0 ,2 X ˛ Y
hX,Y ,2 X+ Y

ΣX,Y ,2 X ˆ Y ,2 0

where X ˛ Y is called the cosmash product of X and Y. It is a measure of non-abelianness.

Given two subobjects (M,m) and (N, n) of an object X,
their Higgins commutator is the image of xm, ny˝hM,N,
that is the subobject of X given by the factorisation on the right.

M ˛ N

_��

� ,2hM,N ,2 M+ N

xm,ny

��
[M,N] ,2 ,2 X

0 ,2 L ˛ M

ψ

��

hL,M ,2 L+M ,2

xs,ky

��

L ˆ M

πL
��

,2 0

0 ,2 M k ,2 X
d ,2 L
s

lr ,2 0

As in Gp, split extensions correspond to action cores via semi-direct products: X – M ¸ψ L.

In Gp, X ˛ Y is the subgroup of X+ Y generated by formal commutator elements xyx´1y´1.
The morphism ψ sends ℓmℓ´1m´1 to ℓmm´1.
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6. In which sense is a crossed square a “double crossed module”?

A roundabout answer is that XSqr » Cat(Cat(Gp)):
crossed squares are equivalent to
double internal categories (= internal double categories)
via the (de)normalisation procedure applied twice.
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In order for the more direct XSqr » XMod(XMod(Gp)) to make sense,
we need to understand what is an internal crossed module.

We define XMod(X ) » Cat(X ) where X is a semi-abelian category;
we see that XMod » XMod(Gp).

Since XMod(X ) is again semi-abelian,
we may put XSqr(X ) – XMod(XMod(X )) and obtain XSqr » XSqr(Gp).

We recall what are semi-abelian categories, and how to define internal actions.



5. Crossed modules [Whi41]

A crossed module (of groups) is a morphism µ : M Ñ L with
an action of L on M such that for all ℓ P L and m, m1 P M:

M1 µ(ℓm) = ℓµ(m)

M2 µ(m)m1 = mm1

Morphisms are equivariant natural transformations. This defines the category XMod.

Special cases

§ µ injective: it is a normal subgroup inclusion, with the conjugation action ℓm = ℓmℓ´1;

§ µ surjective: it is a central extension, so
0 = [Ker(µ),M] = xkmk´1m´1 | k, m P M, µ(k) = 1y;

we may put ℓm1 = mm1m´1 for any m P M such that µ(m) = ℓ.

Crossed modules are “normalised internal categories in Gp”; indeed, XMod » Cat(Gp)

M � ,2 ker(d) ,2 M ¸ L
d ,2

c
,2 Lelr

The action induces the split extension; M1 iff there is c such that µ = c˝ker(d) and c˝e = 1L;
and M2 is equivalent to the condition that this reflexive graph is an internal category.



9. Internal crossed modules [Jan03, HVdL13]

The aim is to have an equivalence XMod(X ) » Cat(X ) for any semi-abelian category X .

A crossed module in X is a morphism µ : M Ñ L together with a suitable action of L on M.
The form of the conditions on the action ψ depends on how actions are encoded.

Here, condition M1 (in groups, µ(ℓm) = ℓµ(m)) amounts to
equivariance of µ with respect to ψ and the conjugation action cL,L of L on itself:

M � ,2 ker(d) ,2

µ

��

M ¸ψ L
d ,2

(c,d)
��

L
e

lr

1L

��
L � ,2

(1L,0)
,2 L ˆ L – L ¸cL,L L

π2 ,2 L
(1L,1L)

lr

L ˛ M
ψ ,2

1L˛µ

��

M

µ

��
L ˛ L

cL,L
,2 L

while M2 (µ(m)m1 = mm1) amounts to

M ˛ M cM,M
,2

µ˛1M
��

M

1M
��

L ˛ M
ψ

,2 M

L ˛ M ˛ M
ψ1,2 ,2

1L˛µ˛1M
��

M

1M
��

L ˛ L ˛ M
ψ2,1

,2 M
ψ1,2 = ψ˝SL,M1,2 ψ2,1 = ψ˝SL,M2,1
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10. The ternary cosmash product [HVdL13, Hig56, CJ03, CGVdL15]
In a semi-abelian category X , any three objects X, Y and Z give rise to a morphism( ιX ιY 0

ιX 0 ιZ
0 ιY ιZ

)
: X+ Y+ Z ÝÑ (X+ Y) ˆ (X+ Z) ˆ (Y+ Z)

and its kernel hX,Y,Z : X ˛ Y ˛ Z Ñ X+ Y+ Z.
The object X ˛ Y ˛ Z is the cosmash product of X, Y and Z.

Given three subobjects (K, k), (M,m) and (N, n) ď X,
their Higgins commutator is the image of xk,m, ny˝hK,M,N,
the subobject of X given by the factorisation on the right.

K ˛ M ˛ N

_��

� ,2hK,M,N ,2 K+M+ N

xk,m,ny

��
[K,M,N] ,2 ,2 X

We call [K,M,N] the ternary Higgins commutator of K, M and N in X.

The ternary commutator occurs naturally in the join decomposition formula
[K,M _ N] = [K,M] _ [K,N] _ [K,M,N].

In general, [[X, X], X] ď [X, X, X]; the equality holds when X is algebraically coherent.

The codiagonal induces folding maps SL,M1,2 : L ˛ M ˛ M Ñ L ˛ M and SL,M2,1 : L ˛ L ˛ M Ñ L ˛ M.
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9. Internal crossed modules [Jan03, HVdL13]

The aim is to have an equivalence XMod(X ) » Cat(X ) for any semi-abelian category X .

A crossed module in X is a morphism µ : M Ñ L together with a suitable action of L on M.
The form of the conditions on the action ψ depends on how actions are encoded.

Here, condition M1 (in groups, µ(ℓm) = ℓµ(m)) amounts to
equivariance of µ with respect to ψ and the conjugation action cL,L of L on itself:

M � ,2 ker(d) ,2

µ

��

M ¸ψ L
d ,2

(c,d)
��

L
e

lr

1L

��
L � ,2

(1L,0)
,2 L ˆ L – L ¸cL,L L

π2 ,2 L
(1L,1L)

lr

L ˛ M
ψ ,2

1L˛µ

��

M

µ

��
L ˛ L

cL,L
,2 L

while M2 (µ(m)m1 = mm1) amounts to

M ˛ M cM,M
,2

µ˛1M
��

M

1M
��

L ˛ M
ψ

,2 M

L ˛ M ˛ M
ψ1,2 ,2

1L˛µ˛1M
��

M

1M
��

L ˛ L ˛ M
ψ2,1

,2 M
ψ1,2 = ψ˝SL,M1,2 ψ2,1 = ψ˝SL,M2,1



11. Internal crossed squares [dMVdL20]

By definition now, XSqr(X ) – XMod(XMod(X )) for any semi-abelian category X ;

then XSqr » XSqr(Gp) is automatic.

Unfortunately, this doesn’t explain the Brown–Loday definition at all!

Our attempt at a more detailed analysis depends on the non-abelian tensor product,
also introduced by Brown and Loday in the article [BL87].
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4. Crossed squares [BL87, GWL81, Lod82]

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

A crossed square is a commuting square in the category Gp of groups, with

§ actions of L on M, N and P
(of M on P and N via µ, of N on M and P via ν)

§ and a function h : M ˆ N Ñ P

such that for all ℓ P L, m, m1 P M, n, n1 P N and p P P:

X0 h(mm1, n) = mh(m1, n)h(m, n) and h(m, nn1) = h(m, n)nh(m, n1);

X1 pM and pN are L-equivariant, and with the given actions, (µ : M Ñ L), (ν : N Ñ L)
and (µ˝pM = ν˝pN : P Ñ L) are crossed modules;

X2 pM(h(m, n)) = mnm´1 and pN(h(m, n)) = mnn´1;

X3 h(pM(p), n) = pnp´1 and h(m, pN(p)) = mpp´1;

X4 ℓh(m, n) = h(ℓm, ℓn).

Morphisms are natural transformations, compatible with the actions and with the map h.
Crossed squares and morphisms between them form the category XSqr.
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12. The non-abelian tensor product of groups [BL87]
Given two groups M and N acting on each other (and on themselves by conjugation),
their non-abelian tensor product M b N is the group
generated by the symbols m b n for m P M and n P N, subject to the relations

(mm1) b n = (mm1 b mn)(m b n) m b (nn1) = (m b n)(nm b nn1)

for all m, m1 P M and n, n1 P N.

Note that providing mutual actions is essential; in this sense,
saying that M b N is a tensor product of groups is not quite fair.

It is common to restrict ourselves to the following key special case, which
in the terminology of Brown–Loday amounts to asking that the given actions are compatible:

We have a group L and two L-crossed modules µ : M Ñ L and ν : N Ñ L;
these induce actions ofM and N on each other, and we obtain a crossed moduleMbN Ñ L.
Thus, the non-abelian tensor product restricts to a functor

b : XModL ˆ XModL Ñ XModL.

How to extend this beyond the case of groups?



13. The tensor product at work [BL87]

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

We consider the crossed square on the left; in particular, we have

§ crossed modules µ and ν, and

§ a function h : M ˆ N Ñ P, where

X0 h(mm1, n) = mh(m1, n)h(m, n) and h(m, nn1) = h(m, n)nh(m, n1);

X4 ℓh(m, n) = h(ℓm, ℓn).

The induced M b N is the group generated by m b n for m P M and n P N, such that
(mm1) b n = (mm1 b mn)(m b n) and m b (nn1) = (m b n)(nm b nn1).

The function h induces a morphism h̄ : M b N Ñ P : m b n ÞÑ h(m, n), because

h̄((mm1) b n) = h(mm1, n) = mh(m1, n)h(m, n) = µ(m)h(m1, n)h(m, n)

= h(µ(m)m1, µ(m)n)h(m, n) = h(mm1, mn)h(m, n)

= h̄(mm1 b mn)h̄(m b n) = h̄((mm1 b mn)(m b n))

and, likewise, h̄(m b (nn1)) = h̄((m b n)(nm b nn1)).
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14. Characterising b via a universal property I [BL87]

Let µ : M Ñ L and ν : N Ñ L be L-crossed modules of groups.
Then the crossed square on the left

M b N
πM ,2

πN
��

M

µ

��
N ν

,2 L

(
ϕ 1M
1N 1L

)
ÝÝÝÝÝÑ

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

where πM(m b n) = mnm´1, πN(m b n) = mnn´1 and h(m, n) = m b n
is universal in the following sense:

If the square on the right is another crossed square (with the same µ and ν), then there is
a unique morphism of crossed squares

(
ϕ 1M
1N 1L

)
from the left-hand to the right-hand

crossed square which is the identity on M, N and L and where ϕ : M b N Ñ P.

This allows us to charaterise b as a pushout in XSqr.
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15. Characterising b via a universal property II [BL87]
Let µ : M Ñ L and ν : N Ñ L be L-crossed modules of groups.
Then the diagram

0 ,2

��

0

��

0 ,2

��

M

µ

��

(
10 0
10 1L

)
,2

0 ,2 L 0 ,2 L

(
10 10
0 1L

)
��

(
0 1M
0 1L

)
��

0 ,2

��

0

��

M b N
πM ,2

πN

��

M

µ

��
(

0 0
1N 1L

),2
N ν

,2 L N ν
,2 L

a pushout in XSqr.

This, we can do in general!



15. Characterising b via a universal property II [BL87]
Let µ : M Ñ L and ν : N Ñ L be L-crossed modules of groups.
Then the diagram
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N ν
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,2 L

a pushout in XSqr.

This, we can do in general!



16. Characterising b via a universal property III [dMVdL20]
Let µ : M Ñ L and ν : N Ñ L be L-crossed modules in a semi-abelian category X .
Consider their induced internal category structures

N � ,2 kN ,2 N ¸ L
dN ,2

cN
,2 L eM ,2eNlr M ¸ L

dM
lr
cMlr

M.�lrkMlr

In Cat2(X ), we construct the following span.

N ¸ L
dN ,2

cN
,2

1

��

1

��

LeNlr

1

��

1

��

L

1

��

1

��

1 ,2

1
,2 L1lr

1

��

1

��

M ¸ L

dM

��

cM

��

1 ,2

1
,2 M ¸ L1lr

dM

��

cM

��

(
eN 1L
eN 1L

)
lr

( eM eM
1L 1L

)
, 2

N ¸ L

1

LR

dN ,2

cN
,2 LeNlr

1

LR

L

1

LR

1 ,2

1
,2 L

1

LR

1lr L

eM

LR

1 ,2

1
,2 L

eM

LR

1lr

The needed tensor crossed square in X is the normalisation of the span’s pushout.

This defines a functor b : XModL(X ) ˆ XModL(X ) Ñ XModL(X ).
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17. Some examples [dMVdL20, BL87, Mac60]

§ In an algebraically coherent semi-abelian category,

[M,N] � ,2 ,2
_��

��

N_��
n

��
M � ,2

m
,2 L

is the initial crossed square of normal monomorphisms over m and n.

The intersection M ^ N also forms such a crossed square, and we may show that
the image of the canonical map h̄ : M b N Ñ M ^ N is [M,N].

§ X in a semi-abelian category X is abelian when [X, X] = 0 and nil-2 when [X, X, X] = 0.
These form full subcategories Ab(X ) and Nil2(X ) of X .

If X is algebraically coherent, then for any pair of abelian objects M and N
acting trivially on one another, we have M b N – M ˛2 N,
where M ˛2 N is the cosmash product in Nil2(X ).

In particular, when M and N are (abelian) groups, M b N – M bZ N.
This exhibits the bilinear product of [DHVdL25] as a non-abelian tensor product.
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18. Internal crossed squares II [dMVdL20]

Let X be an algebraically coherent semi-abelian category.
By definition, a crossed square is an object of the category XSqr(X ) – XMod(XMod(X )).

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

A weak crossed square is a commuting square in the category X , with

§ internal actions of L on M, N and P
(of M on P and N via µ, of N on M and P via ν)

§ and a morphism h̄ : M b N Ñ P

such that conditions resembling those of a crossed square of groups hold.

Any crossed square is a weak crossed square.
In all examples we know of, the converse holds.
We don’t know if this is true in general.
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What is a double central extension?



20. Central extensions and the Hopf formula for H2 [Hop42, EVdL04]

An extension under K and over L is a short exact sequence

0 ,2 K � ,2 ,2 M
µ � ,2 L ,2 0.

§ It is central iff [K,M] = 0 iff µ admits a crossed module structure.
In particular, K is abelian.

§ It is a projective presentation iff M is a projective object.
In Gp, this means that M is free.

If X is a semi-abelian variety, let H2(L) denote the value in L of the first derived functor of
ab : X Ñ Ab(X ) : X ÞÑ X/[X, X].

The Hopf formula for H2 makes this concrete. Let µ be a projective presentation of L. Then

H2(L) –
K ^ [M,M]

[K,M]
.

How to extend this to Hn(L) for n ě 3?
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21. The Hopf formula for H3 [BE88, DIP05, EGVdL08]

K_��

��

� ,2 ,2 KN_��

��

� ,2 Kµ_��

��
KM

� ,2 ,2

_��

P
pM � ,2

pN
_��

M

µ
_��

Kν
� ,2 ,2 N ν

� ,2 L

A double extension under K and over L
is a 3 ˆ 3-diagram as on the left:
rows and columns are short exact sequences.

It is a double projective presentation
when M, N and P are projective objects.
Example: a truncated simplicial resolution of L.

In 1988, Brown and Ellis proved that for such a double projective presentation,

H3(L) –
K ^ [P, P]

[K, P] _ [KM,KN]
.

They had a formula for all Hn(L), obtained by topological means.
How to explain the denominator algebraically?

What is a double central extension?
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22. Some attempts towards an answer
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We need that [K, P] _ [KM,KN] = 0,
so both [K, P] and [KM,KN] must be trivial.

A first attempt (in Gp) could be, to let µ˝pM = ν˝pN be
a crossed square (of surjective group homomorphisms).
Then µ˝pM is a surjective crossed module,
so that its kernel KM _ KN commutes with P:
this condition is much stronger than what we need!
(Note [K, P] _ [KM,KN] ď [KM _ KN, P] = 0.)

“Central extension of central extensions”, so [KM, P] = 0 = [KN, P], agrees with this.

An example of a square which should induce a double central
extension is the one on the right, where M and N are arbitrary groups.
Indeed, [0 ˆ N,M ˆ 0] = 0 = [(M ˆ 0) ^ (0 ˆ N),M ˆ N].
It is not a crossed square though, unless M and N are abelian.

M ˆ N
πM ,2

πN
��

M

µ

��
N ν

,2 0

What is a double central extension?
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23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.

(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)

A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



23. Janelidze’s answer [Jan91, JK94, EGVdL08]
Ronnie’s question was answered by George Janelidze in 1991:
it depends on a recursive use of the categorical Galois theory developed by him.

Consider X semi-abelian and B a Birkhoff subcategory:
full, reflective, closed under subobjects and quotients in X .

A normal epimorphism is a covering when any of its kernel
pair projections is a pullback of its reflection in B.

Eq(µ)

ηEq(µ)

��

,2
,2 M

ηM

��

lr µ � ,2 L

B(Eq(µ))
,2
,2 B(M)lr

A group epimorphism is a central extension iff it is a covering with respect to Ab ď Gp.

We consider the full subcategory CExt(Gp) of the category Ext(Gp) of extensions of groups,
determined by the central extensions.
(Strictly speaking, Ext(Gp) is not semi-abelian, but the above still makes sense.)
A double extension of groups (viewed as a normal epimorphism of group extensions)
is a double central extension iff it is a covering with respect to CExt(Gp) ď Ext(Gp).

It is a double extension, central with respect to central extensions.

This idea enables an algebraic proof of the Hopf formulae in all dimensions.



24. A symmetric characterisation [RVdL23, RVdL16]
I would like to end with a recent simple and non-inductive approach to higher centrality.
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pM
� ,2
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B(R)

LR

,2
,2 B(P)lr

LR

N ν
� ,2 L

Given a double extension in X ,

§ consider the associated
square of normal epimorphisms;

§ take kernel pairs R = Eq(pM) and
S = Eq(pN) to obtain a double category;

§ take its reflection into the chosen
Birkhoff subcategory B.

The given double extension is central,
iff any of the cubes induced by the blue adjunction units is a limit cube.

This idea works in all semi-abelian categories, for extensions of arbitrary dimension.
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iff any of the cubes induced by the blue adjunction units is a limit cube.

This idea works in all semi-abelian categories, for extensions of arbitrary dimension.



25. Outlook

§ The applications of higher centrality reach far beyond the Hopf formulae.
For instance, with Diana Rodelo we used higher central extensions in a Yoneda-style
interpretation of the cohomology groups in the semi-abelian setting [RVdL10, RVdL16].

§ I truly believe our incomplete attempt at characterising crossed squares is sound.
I hope to prove this, one day!

§ Of course, Ronnie Brown did many things besides what I mentioned here today.
My focus here was on how he influenced my own work,
and on my own answers to these few questions.
Without his contributions, my work would be incomparably less exciting.
For this, I will forever remain immensely grateful.
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Thank you!
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