

FREE MONOIDS AND RIGUET CONGRUENCES

XV Portuguese Category Seminar

University of Aveiro Aveiro, September 2025

Raúl Ruiz Mora

Departament de Matemàtiques **Universitat de València**

PRELIMINARIES

Many-sorted sets and the free monoid on a set

MANY-SORTED SETS

Given a set A, an A-sorted set is an A-indexed family $X=(X_a)_{a\in A}$ where, for every $a\in A$, X_a is a set.

If X and Y are A-sorted sets, an A-sorted mapping from X to Y is an A-indexed family $f = (f_a)_{a \in A}$ where, for every $a \in A$, f_a is a mapping from X_a to Y_a .

A-sorted sets and A-sorted mappings form a category Set^A .

An A-sorted set X is **finite** if $\coprod X$ is finite.

Finite A-sorted sets and A-sorted mappings between them form a category $\mathsf{Set}^A_\mathbf{f}$.

Given a set A, a **word** on A is a mapping $\mathbf{a} \colon n \to A$ for some $n \in \mathbb{N}$. We will denote by A^* the set of all words on A. $|\mathbf{a}|$ is the domain of the word \mathbf{a} . Moreover, for a letter $a \in A$ we will denote by $|\mathbf{a}|_a$ the number of ocurrences of a in \mathbf{a} .

Two words \mathbf{a} and \mathbf{b} on A can be concatenated $\mathbf{a} \wedge \mathbf{b}$.

The empty word will be denoted by λ .

The **free monoid on** A is (A^*, λ, λ) .

Example

 $\mathbf{a} = baac$ and $\mathbf{b} = caba$ are words on $A = \{a, b, c\}$.

Example

If we consider the sets $A = \{a, b, c\}$ and $B = \{x, y, z\}$ and the mapping $f: A \to B$ defined as follows, f(a) = x, f(b) = y and f(c) = z, then:

$$f^{@}(\mathbf{a}) = f^{@}(baac)$$
$$= f(b)f(a)f(a)f(c)$$
$$= yxxz$$

We will say that two words \mathbf{a} and \mathbf{b} are **congruent**, $\mathbf{a} \equiv^A \mathbf{b}$, if, for every $a \in A$, $|\mathbf{a}|_a = |\mathbf{b}|_a$.

Example

The words $\mathbf{a} = baac$ and $\mathbf{b} = caba$ are congruent.

For a word \mathbf{a} and an index $i \in |\mathbf{a}|$, we will denote by $\mathsf{occ}_{\mathbf{a}}(i)$ the number of occurrence of $\mathbf{a}(i)$ in \mathbf{a} .

For a word **a**, a letter a occurring in **a** and $j \in |\mathbf{a}|_a$, we will denote by $\mathsf{pos}_{\mathbf{a},a}(j)$ the position of the j-th occurrence of a in **a**.

Example

For the word $\mathbf{a} = baac$, $\mathsf{occ}_{\mathbf{a}}(2) = 1$ and $\mathsf{pos}_{\mathbf{a},c}(0) = 3$.

For every pair of congruent words $\mathbf{a} \equiv^A \mathbf{b}$, the permutation

$$\begin{array}{ccc} \sigma_{\mathbf{a},\mathbf{b}} \colon & |\mathbf{a}| & \to & |\mathbf{b}| \\ & i & \mapsto & \mathsf{pos}_{\mathbf{b},\mathbf{a}(i)}(\mathsf{occ}_{\mathbf{a}}(i)) \end{array}$$

is called the **canonical permutation** for the pair (\mathbf{a}, \mathbf{b})

Proposition

The canonical permutation is such that $\mathbf{a} = \mathbf{b} \circ \sigma_{\mathbf{a},\mathbf{b}}$.

Example

$$\mathbf{a} = b \quad a \quad a \quad c$$

$$\mathbf{b} = c \quad a \quad b \quad a$$

Proposition

If $\mathbf{a} \equiv^A \mathbf{b}$ and $\mathbf{b} \equiv^A \mathbf{c}$, then

$$(1)\sigma_{\mathbf{a},\mathbf{a}} = \mathrm{id}_{|\mathbf{a}|} \qquad (2)\sigma_{\mathbf{b},\mathbf{c}} \circ \sigma_{\mathbf{a},\mathbf{b}} = \sigma_{\mathbf{a},\mathbf{c}}$$

$$(3)\sigma_{\mathbf{a},\mathbf{b}}^{-1} = \sigma_{\mathbf{b},\mathbf{a}}$$

THE CATEGORY $C(\mathbf{A}^{\star})$

The first category equivalent to $\mathsf{Set}^A_{\mathbf{f}}$

THE CATEGORY $C(\mathbf{A}^*)$

Let A be a set. The category $C(\mathbf{A}^*)$ is defined as follows.

Objects. Words on A.

Morphisms. A morphism from ${\bf a}$ to ${\bf b}$ is a mapping $\varphi\colon |{\bf a}|\to |{\bf b}|$ such that the diagram

commutes.

If $|A| \geq 2$, the category $C(\mathbf{A}^*)$ is not skeletal.

THE FUNCTOR C FROM Set TO Cat

$\mathsf{C}(\mathbf{A}^\star) \simeq \mathsf{Set}^A_{\mathrm{f}}$

Proposition

The categories $C(\mathbf{A}^*)$ and Set_f^A are equivalent.

The equivalence is

$$\begin{array}{ccc}
\mathbf{C}(\mathbf{A}^{\star}) & \xrightarrow{\downarrow^{A}(\bullet)} & \mathsf{Set}_{\mathrm{f}}^{A} \\
\mathbf{a} & & (\mathbf{a}^{-1}[\{a\}])_{a \in A} \\
\varphi & & & \downarrow^{(\varphi)_{a \in A}} \\
\mathbf{b} & & (\mathbf{b}^{-1}[\{a\}])_{a \in A}
\end{array}$$

THE CATEGORY $Q(\mathbf{A}^{\star})$

A Riguet quotient of $C(\mathbf{A}^*)$

RIGUET CONGRUENCE

Riguet 1960 [2]

A Riquet congruence on a category C is an ordered pair

$$\Phi = \left(\Phi^{\text{ob}}, \left(\Phi^{\text{fl}}_{\begin{pmatrix} a & b \\ a' & b' \end{pmatrix}}\right)_{\begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \in \Phi^{\text{ob}} \times \Phi^{\text{ob}}}\right)$$

in which

- Φ^{ob} is an equivalence relation on Ob(C) and,
- for every matrix $\begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \in \Phi^{\mathrm{ob}} \times \Phi^{\mathrm{ob}}$, in which we agree that $(a,a') \in \Phi^{\mathrm{ob}}$ and $(b,b') \in \Phi^{\mathrm{ob}}$, $\Phi^{\mathrm{fl}}_{\begin{pmatrix} a & b \\ a' & b' \end{pmatrix}}$ is a subset of $\mathrm{Hom}_{\mathsf{C}}(a,b) \times \mathrm{Hom}_{\mathsf{C}}(a',b')$ such that

RIGUET CONGRUENCE

for every $(a, a'), (a', a''), (b, b'), (b', b''), (c, c') \in \Phi^{ob}$

- 1. $\Delta_{\operatorname{Hom}_{\mathsf{C}}(a,b)} \subseteq \Phi^{\mathrm{fl}}_{\left(\begin{smallmatrix} a & b \\ a & b \end{smallmatrix}\right)};$
- $2. \ (\Phi^{\mathrm{fl}}_{\left(\begin{smallmatrix} a & b \\ a' & b' \end{smallmatrix}\right)})^{-1} = \Phi^{\mathrm{fl}}_{\left(\begin{smallmatrix} a' & b' \\ a & b \end{smallmatrix}\right)};$
- 3. $\Phi_{\begin{pmatrix} a' & b' \\ a'' & b'' \end{pmatrix}}^{\mathrm{fl}} \circ \Phi_{\begin{pmatrix} a & b \\ a' & b' \end{pmatrix}}^{\mathrm{fl}} \subseteq \Phi_{\begin{pmatrix} a & b \\ a'' & b'' \end{pmatrix}}^{\mathrm{fl}};$
- 4. if $(f,f') \in \Phi^{\mathrm{fl}}_{\left(egin{smallmatrix} a & b \\ a' & b' \end{smallmatrix} \right)}$ and $(g,g') \in \Phi^{\mathrm{fl}}_{\left(egin{smallmatrix} b & c \\ b' & c' \end{smallmatrix} \right)}$ then $(g \circ f, g' \circ f') \in \Phi^{\mathrm{fl}}_{\left(egin{smallmatrix} a & c \\ a' & c' \end{smallmatrix} \right)}$;
- 5. if $f: a \to b$, then there exists an $f: a' \to b'$ such that $(f, f') \in \Phi^{\mathrm{fl}}_{\left(\begin{array}{cc} a & b \\ a' & b' \end{array} \right)}$.

RIGUET QUOTIENT

For a Riguet congruence Φ on a category C we define its quotient relative to Φ is defined as follows

Objects. $Ob(C/\Phi) = Ob(C)/\Phi^{ob}$

Morphisms. $\operatorname{Hom}_{\mathsf{C}/\Phi}([a],[b])=\{[f]\mid f\in \operatorname{Hom}_{\mathsf{C}}(a,b)\}$ where

$$[f] = \bigcup_{a' \in [a], b' \in [b]} \left\{ f' \colon a' \to b' \mid (f, f') \in \Phi^{\mathrm{fl}}_{\begin{pmatrix} a & b \\ a' & b' \end{pmatrix}} \right\}$$

Proposition

The projection functor pr_{Φ} is a functor from C to C/Φ .

RIGUET CONGRUENCE ON $C(\mathbf{A}^*)$

We consider the following binary relations on objects and morphisms of $C(\mathbf{A}^*)$:

Objects. $\mathbf{a} \equiv^A \mathbf{b}$.

Morphisms. If $\mathbf{a} \equiv^A \mathbf{a}'$ and $\mathbf{b} \equiv^A \mathbf{b}'$, then $\varphi \colon \mathbf{a} \to \mathbf{b}$ and $\varphi' \colon \mathbf{a}' \to \mathbf{b}'$ are such that $\varphi \equiv^A_{\begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{a}' & \mathbf{b}' \end{pmatrix}} \varphi'$ if the following diagram commutes

$$|\mathbf{a}| \xrightarrow{\varphi} |\mathbf{b}|$$

$$\sigma_{\mathbf{a},\mathbf{a}'} \downarrow \qquad \qquad \downarrow \sigma_{\mathbf{b},\mathbf{b}'}$$

$$|\mathbf{a}'| \xrightarrow{\varphi'} |\mathbf{b}'|$$

THE CATEGORY $Q(\mathbf{A}^{\star})$

Proposition

$$\left(\equiv^A, \left(\equiv^A_{\begin{pmatrix}\mathbf{a} & \mathbf{b} \\ \mathbf{a'} & \mathbf{b'}\end{pmatrix}\right)_{\begin{pmatrix}\mathbf{a} & \mathbf{b} \\ \mathbf{a'} & \mathbf{b'}\end{pmatrix}\in\equiv^A\times\equiv^A}\right) \text{ is a Riguet congruence on } \mathsf{C}(\mathbf{A}^\star).$$

We let $O(\mathbf{A}^*)$ stand for the quotient category $C(\mathbf{A}^*)/\equiv^A$.

The category $Q(\mathbf{A}^*)$ is skeletal.

THE FUNCTOR Q FROM Set TO Cat

THE MAPPING $|\varphi|_a$

For every mapping $\varphi \colon \mathbf{a} \to \mathbf{b}$ in $\mathsf{C}(\mathbf{A}^*)$ and every a in A,

$$\begin{aligned} |\mathbf{a}| & \xrightarrow{\varphi} |\mathbf{b}| \\ \operatorname{pos}_{\mathbf{a},a} \Big| & & \bigvee_{pos_{\mathbf{b},a}} \\ |\mathbf{a}|_a - & \xrightarrow{\exists ! |\varphi|_a} > |\mathbf{b}|_a \end{aligned}$$

Proposition

If
$$\varphi \equiv_{\left(egin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{a'} & \mathbf{b'} \end{array} \right)}^{A} \varphi'$$
, then, for every a in A , $|\varphi|_a = |\varphi'|_a$.

$\mathsf{Q}(\mathbf{A}^\star) \simeq \mathsf{Set}^A_{\mathrm{f}}$

Proposition

The categories $O(\mathbf{A}^*)$ and Set_f^A are equivalent.

The equivalence is

$$Q(\mathbf{A}^{\star}) \xrightarrow{(|\bullet|a)_{a \in A}} \operatorname{Set}_{f}^{A}$$

$$[\mathbf{a}] \qquad (|\mathbf{a}|_{a})_{a \in A}$$

$$[\varphi] \downarrow \qquad \qquad \downarrow (|\varphi|_{a})_{a \in A}$$

$$[\mathbf{b}] \qquad (|\mathbf{b}|_{a})_{a \in A}$$

CONCLUSIONS

- 1. $\operatorname{Set}_{\mathrm{f}}^{A} \simeq \operatorname{C}(\mathbf{A}^{\star}) \simeq \operatorname{Q}(\mathbf{A}^{\star}).$
- 2. $Q(\mathbf{A}^*)$ plays an analogous role for the category Set_f^A as Card_f does for Set_f .
- 3. To the best of our knowledge, it is the first example of a non-trivial Riguet congruence.

BIBLIOGRAPHY

Jacques Riguet, Catégorisation de la notion de structures et de structures locales chez N. Bourbaki et C. Ehresmann, I. S'eminaire Dubreil. Algèbre et théorie des nombres, tome 14, n°1 (1960-1961), exp. n°5, pp. 1–32.

FREE MONOIDS AND RIGUET CONGRUENCES

XV Portuguese Category Seminar

University of Aveiro Aveiro, September 2025

Raúl Ruiz Mora

Departament de Matemàtiques **Universitat de València**

