7% VNIVERSITAT
€9 b VALENCIA

FREE MONOIDS AND RIGUET CONGRUENCES

XV Portuguese Category Seminar
University of Aveiro
Aveiro, September 2025

Raul Ruiz Mora

Departament de Matematiques
Universitat de Valéncia



PRELIMINARIES

Many-sorted sets and the free monoid on a set



MANY-SORTED SETS

Given a set A4, an A-sorted set is an A-indexed family X = (X,).c4 Where, for
every a € A, X, is aset.

If Xand Yare A-sorted sets, an A-sorted mapping from X to Yis an A-indexed
Family f = (f1)eca Where, for every a € 4, f, is a mapping from X, to Y.

A-sorted sets and A-sorted mappings form a category Set*.
An A-sorted set X'is finite if [] X'is finite.

Finite A-sorted sets and A-sorted mappings between them form a category Set?.



FREE MONOID ON A SET

Given aset A, aword on A isamappinga: n — A for some n € N. We will denote
by A* the set of all words on A. |a| is the domain of the word a. Moreover, for a
letter a € A we will denote by |al, the number of ocurrences of ain a.

Two words a and b on 4 can be concatenateda A b.
The empty word will be denoted by \.
The free monoid on A is (A*, A, ).

a = baacand b = caba are wordson A = {a, b, c}.



FREE MONOID ON A SET

Proposition
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FREE MONOID ON ASET

If we consider the sets A = {a, b, ¢} and B = {z, y, z} and the mapping f: A — B
defined as follows, f(a) = z, f(b) = yand f(c) = 2 then:

(a) = *(baac)
= fb)fla)f(a)f(c)

= YTTZ



FREE MONOID ON A SET

We will say that two words a and b are congruent, a =4 b, if, for every a € 4,
|l = [bla

The words a = baacand b = caba are congruent.



FREE MONOID ON A SET

For a word a and an index i € |a|, we will denote by occ,(i) the number of

occurrence of a(i) in a.

For a word a, a letter a occurring in aand j € |al,, we will denote by pos, ,(j) the
position of the j-th occurrence of ain a.

For the word a = baac, 0cCa(2) = 1 and pos, .(0) = 3.



FREE MONOID ON A SET

For every pair of congruent words a =4 b, the permutation

Oab: |a| — |b|
i > POSpa(;)(0CCa(4))

is called the canonical permutation for the pair (a, b)

Proposition
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FREE MONOID ON A SET

Ifa=4bandb =4 ¢, then

(1)Ua,a — iCl|a| (Z)Ub,c O©0ab = Oac (3)0'3_; = Ob,a



THE CATEGORY C(A*)

The first category equivalent to Set{‘



THE CATEGORY C(A¥)

Let A be a set. The category C(A*) is defined as follows.
Objects. Words on A.

Morphisms. A morphism froma to b is a mapping ¢: |a| — |b| such that the
diagram
ja| ———— |b|
A
commutes.
If |A] > 2, the category C(A*) is not skeletal.
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THE FUNCTOR C FROM Set TO Cat
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Proposition

The equivalence is
)

Setf!
a (@ '[{a}])aea
sﬂl — l(@)aeA
b (b~ [{a}])aca



THE CATEGORY Q(A*)

A Riguet quotient of C(A*)



RIGUET CONGRUENCE

Riguet 1960 [2]

A Riguet congruence on a category Cis an ordered pair
b fl
o— o ,<q><a b>>
@ V(G g e

e ®°Pisan equivalence relation on Ob(C) and,

in which

e forevery matrix (% %) € ®° x ®°", in which we agree that (a, a’) € ®°" and

(b, V) € ®°P, @? 0 1) is a subset of Homc(a, b) x Home(d/, ') such that
a v
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RIGUET CONGRUENCE

forevery (a, d), (d',d"), (b, V), (¥, ¥"), (c, ) € P
1. AHomc a,b) - ofl
2. (of
3. ofl o dfl fl :
a v a b\’

(5" () < (2 )

4. if(ﬁf)ecbfgw)and (g,gf)eé?bl o) then (go /g of) € @l c);

5. if f: a — b, then there exists an f: ¢ — ¥ such that (f,f) € &

(&)
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RIGUET QUOTIENT

For a Riguet congruence ® on a category C we define its quotient relative to ® is
defined as follows

Objects. Ob(C/®) = Ob(C)/d°P
Morphisms. Homc ¢ ([a], [0]) = {[f] | f€ Homc(a, b)} where

a b

[f] = Ua’e[a},b’e[b} {f a—l ‘ (ﬁf) < (I)% a b)}

Proposition
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RIGUET CONGRUENCE ON C(A*)

We consider the following binary relations on objects and morphisms of C(A*):
Objects.a =4 b.

Morphisms. Ifa=4a’andb =4 b/, then ¢: a — band ¢/: a’ — b’ are such that
© z?a b) ¢’ if the following diagram commutes

a’ b’

ja| —— |b]

Ja,a’ l \Lab’b/

|| —= [b/|
@
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THE CATEGORY Q(A™)

Proposition

We let Q(A*) stand for the quotient category C(A*)/ =4.
The category Q(A*) is skeletal.



THE FUNCTOR Q FROM Set TO Cat

Set ———— Cat Q(A¥) Q(B*)
A Q(A*)  where [a] [/%(a)]
fl — iQ(f) [@]l — l[@]
B Q(B*) [b] [/(b)]



THE MAPPING |¢|,

For every mapping ¢: a — b in C(A*) and every ain 4,

©
la| ———— b
Pos, al iposb,a
lala TNyl bla

Proposition
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Proposition

The equivalence is
Q(A*) (HE)EEA Seth

[2] (lala)aca

[¢] — l(‘ﬂ'a)aeA

[b] (Ibla)aca
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CONCLUSIONS

1. Setf ~ C(A*) ~ Q(A™).
2. Q(A*) plays an analogous role for the category Set{! as Card; does for Set;.

3. To the best of our knowledge, it is the first example of a non-trivial Riguet
congruence.
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