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Background and motivation

Graphical calculi and an open problem

However, the formal theory of linear categories (d la universal algebra
or type theory) is extremely complex — with 70 knotty equations.

On the other hand, string diagrams or graphical calculi — intuitive
yet rigorous — have been extensively used in category theory.
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(1d-r ® (foidg) ® (idpog) = (idgo f) ® (goide) ® ldT)

Problem (technical nightmare of linear categories)

There has been no graphical calculi for linear categories for 38 years. J
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The ¢-calculus

Example (1/2)
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The ¢-calculus (1/2)

Our graphical calculus for linear categories — the £-calculus — has
e /-types T' — rooted trees — defined by
Ti=Xp | T |1 Ly | TOT | T xT' | T — T | 1y ay{Ti }ier,

where {T;};cr is a finite family of /-types T; that share the same
underlying formula A;
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The ¢-calculus (1/2)

Our graphical calculus for linear categories — the £-calculus — has

e /-types T' — rooted trees — defined by
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where {T;}icr is a finite family of /-types T; that share the same
underlying formula A;
e (-cuts O defined by

where T is the formula underlying T

e /-sequents F' — rooted trees — of the form

T\, Ts, ..., Ty 461,0s,...,0, F Tp,
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The ¢-calculus

The ¢-calculus (1/2)
Our graphical calculus for linear categories — the £-calculus — has
e /-types T' — rooted trees — defined by
T := X[”] | TM | 1 | LM | TT | TxT | T —T | ![2/,](/4){]1',;}7;6],

where {T;}icr is a finite family of /-types T; that share the same
underlying formula A;
e (-cuts O defined by

)

© :=(T, T) | ’[1]@ (T = i)

where T is the formula underlying T
@ /-sequents F' — rooted trees — of the form

T, To,...., Ty 461,0,...,0, F T,

and its £-slice F'(€) for a choice € of x — marked as ¢Xo, Or 5 Xa,
where leaves of F' or F(€) are O- vs. P-, and jokerif on T or !;
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The ¢-calculus (2/2)

e Slice graphs & : F'(€) given by a set £ of edges 0 — p from O- to
P-leaves of F(€) compatible with € consist of £ and --»,
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e Slice graphs & : F'(€) given by a set £ of edges 0 — p from O- to
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The ¢-calculus (2/2)

e Slice graphs & : F'(€) given by a set £ of edges 0 — p from O- to
P-leaves of F(€) compatible with € consist of £ and --+, where
@ pison T (resp. !)if sois o, and p is on X if so is o with p non-joker;
@ Alt. paths in £ : F/(C) are exhaustive for leaves of F'(€) up to (1, x);
@ The subgraph of £ : F(€) w.r.t. non-joker leaves is total and acyclic,
and said to be canonical if £ is
Q@ Minimal w.r.t. alt. paths;
© Mazximal in joker leaves used in alt. paths;
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T F = H Te = F(Q)
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The ¢-calculus (2/2)

e Slice graphs & : F'(€) given by a set £ of edges 0 — p from O- to
P-leaves of F(€) compatible with € consist of £ and --+, where
@ pison T (resp. !)if sois o, and p is on X if so is o with p non-joker;
@ Alt. paths in £ : F/(C) are exhaustive for leaves of F'(€) up to (1, x);
© The subgraph of £ : F(€) w.r.t. non-joker leaves is total and acyclic,
and said to be canonical if £ is
Q@ Minimal w.r.t. alt. paths;
© Mazximal in joker leaves used in alt. paths;

e Logical graphs — disjoint unions

T F= H Te = F(Q)

CeChoicex (F)

of (mutually) consistent slice graphs

and called £-graphs if the slice graphs are all canonical.
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Why slicing?

There is an /-graph whose slice graphs are

Lin X s Lig ° Lip) - Lio e Xo
VRN L~ T T T~
LM X Li#)s L,'JJ —o LU)J =+ L,“, oXe

and there is another /-graph whose slice graphs are
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The ¢-calculus

Why slicing?

There is an /-graph whose slice graphs are

L) X L1 Lig] —o Lip - L, o Xo Lig
VRN L~ T T T~
Lir e L 1 ) I S ¢ I 1 B R S )

RN le” T T TS L T~
e (MR (5 ERE )

amada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro

10/ 17



The ¢-calculus

Why slicing?

There is an /-graph whose slice graphs are

J‘M x —[7] Lig] - L[M - Lio e Xo Lo
VRN L~ T T T~
Lir e L 1 ) I S ¢ I 1 B R S )

(CMUC) Graphical linear categories Sep 12, 2025, Aveiro

10/ 17



The ¢-calculus

Why slicing?
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Why canonicity?

There are four logical graphs

but they should all coincide. Then, only the last one is canonical.
Similarly, there are three logical graphs

SN
L:p] X L:'i L[o] —o 1 -+ 1
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The ¢-calculus

Why canonicity?

There are four logical graphs

but they should all coincide. Then, only the last one is canonical.
Similarly, there are three logical graphs

77T

L:v] X L:'i LM —o 1 =+ 1
L—~ L7777~

Lip) X Lirps L10) —o 1 - 1
— 77T

Lip] X Ly Li0) —o 1 - 1
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The ¢-calculus
Why canonicity?

There are four logical graphs

/\
" [p] ! Mol ® (0] Tlp) ! Mol ® (0]
/\ >~
Tw = T ® T mefw

but they should all coincide. Then, only the last one is canonical.

Similarly, there are three logical graphs

77T
Lip] X L Lio] —o 1 - 1
L—~ L7777~
Lip) X Lirps L10) —o 1 - 1
— 77T
Lip] X Ly Lio] — 1 - 1

but they must be equal.
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Why canonicity?

There are four logical graphs

/\
" [p] I Mol ® (0] Tlp) I Mol ® (0]
/\ >~
Tip] -+ Tlo] ® Tia] Tp) w Ts)

but they should all coincide. Then, only the last one is canonical.
Similarly, there are three logical graphs

77T

L:p] X Li': L[O] —o 1 =+ 1
L—~ L7777~

Lip) X Lirps L10) —o 1 - 1
— 77T
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The /-reduction

The #-reduction —, transforms logical graphs by modifying /-cuts.
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The ¢-reduction —, transforms logical graphs by modifying /-cuts.

Theorem (correctness of ¢-reduction)
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The ¢-calculus

The /-reduction

The ¢-reduction —, transforms logical graphs by modifying /-cuts.

Theorem (correctness of ¢-reduction)

FEach (-graph 1o : Fo has a finite sequence (1i—1 : Fi—1 = 1« i)l of
(-reduction, and any of these sequences satisfies
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The ¢-reduction —, transforms logical graphs by modifying /-cuts.

Theorem (correctness of ¢-reduction)
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The ¢-calculus

The /-reduction

The ¢-reduction —, transforms logical graphs by modifying /-cuts.

Theorem (correctness of ¢-reduction)
FEach (-graph 1o : Fo has a finite sequence (1i—1 : Fi—1 = 1« i)l of
(-reduction, and any of these sequences satisfies

@, =T1+oifFp=I41XFd;

® 7, : [, is a unique (-graph for 1o : Fy — normal form nf,(ry : Fo).J
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The ¢-calculus

The /-reduction

The £-reduction —, transforms logical graphs by modifying ¢-cuts.

Theorem (correctness of ¢-reduction)
FEach (-graph 1o : Fo has a finite sequence (1i—1 : Fi—1 = 1« i)l of
L-reduction, and any of these sequences satisfies

@, =T1+oifFp=I41XFd;

® 7, : [, is a unique (-graph for 1y : Fy — normal form nf,(1y : Fp).

By this theorem, the £-equivalence

T F 7 Fronfy(r: F) =nfy(7 : F)

between f(-graphs is a well-defined equivalence relation.
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Picturing linear categories

The initiality theorem

Theorem (a graphical initial linear category)
The £-calculus forms an initial linear category. J
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The initiality theorem

Theorem (a graphical initial linear category)

The £-calculus forms an initial linear category.

@ An object is a formula in intuitionistic linear logic;
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Picturing linear categories

The initiality theorem

Theorem (a graphical initial linear category)
The £-calculus forms an initial linear category. J

@ An object is a formula in intuitionistic linear logic;
e A morphism A — B is the f-eq. class [7: F|y of an ¢-graph

T:F=(P:Tad0: 3+ % :Tg);
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Picturing linear categories

The initiality theorem

Theorem (a graphical initial linear category) J

The £-calculus forms an initial linear category.

@ An object is a formula in intuitionistic linear logic;
e A morphism A — B is the f-eq. class [7: F|y of an ¢-graph

T:F=(P:Tad0: 3+ % :Tg);

@ The composition A [ﬂé B [“—Gk C, where
pw:G=(2:TpdAn:1IF% :1¢),
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Picturing linear categories

The initiality theorem

Theorem (a graphical initial linear category)

The (-calculus forms an initial linear category.

@ An object is a formula in intuitionistic linear logic;
e A morphism A — B is the f-eq. class [7: F|y of an ¢-graph

T:F=(P:Tad0: 3+ % :Tg);

@ The composition A 4 “—l C, where
w:G=(2:Tpdn:1IF % :1¢),
is the f-eq. class of the canonical form of the logical graph

P:Tyd0:5BUL2 (T, Tp),m: 11+ F : T¢;
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Picturing linear categories

The initiality theorem

Theorem (a graphical initial linear category)

The (-calculus forms an initial linear category.

@ An object is a formula in intuitionistic linear logic;
e A morphism A — B is the f-eq. class [7: F|y of an ¢-graph
T:F=(P:Tad0: 3+ % :Tg);

@ The composition A 4 “—l C, where
w:G=(2:Tp4n:1I+-%€:Tc),
is the f-eq. class of the canonical form of the logical graph

P :Tyd0:3,8U2:¢(Tp,T),m : I+ :T¢

@ The identity id4 : A — A links pairs of corresponding leaves.
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Application

The triple unit problem (1/2)
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The triple unit problem (1/2)

Corollary (the triple unit problem)

The initial linear category has just one morphism
(T—oT)—-T)—-T—=>({(T—-=T)—oT)—T,

and just two morphisms

(X =T)—=T)=T=3((X—=T)—oT)—T.
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The triple unit problem (1/2)

Corollary (the triple unit problem)

The initial linear category has just one morphism
(T—oT)—-T)—-T—=>({(T—-=T)—oT)—T,
and just two morphisms

(X —=oT)—oT)—=T=2z(X—oT)—T)—oT.

v

Proof.

For the first part, there is just one f-graph

T TNl T N T T T
- K
, % =7 Ty S Tiol
\\/ T/\\§7_,// ~_

v
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Application

The triple unit problem (2/2)
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The triple unit problem (2/2)

Proof (continued).

For the second part, there are just two ¢-graphs

- N N RN
((X[w) *ﬁ:)ﬂ\ﬂx]) —~ T g
N
N \«X[“] . T[q:)‘( ﬁT:“])C/TM
N RN
((X[w) —o Tep) ﬂ\T[m ™ —° Tir -
N
F \ (X1 —o Tra) B = Tip)) 4K Tlo]
L]
v

Graphical linear categories Sep 12, 2025, Aveiro 17 /17



	Background and motivation
	The -calculus
	Picturing linear categories
	Application

