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Background and motivation

Linear categories

Linear-nonlinear adjunctions

C = (C,×, 1,⇒) ⊥ L = (L,⊗,⊤,⊸)

between a CCC C and an SMCC L are ubiquitous.

Of our particular interest are linear categories

L! = (L!,×, 1,⇒) ⊥ L = (L,⊗,⊤,⊸, !,×, 1)

!
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Background and motivation

Graphical calculi and an open problem

However, the formal theory of linear categories (à la universal algebra
or type theory) is extremely complex – with 70 knotty equations.

On the other hand, string diagrams or graphical calculi – intuitive
yet rigorous – have been extensively used in category theory.

f
A B

gC D =
f

A B

gC D

(
id⊤ ⊗ (f ◦ idA)⊗ (idD ◦ g) = (idB ◦ f)⊗ (g ◦ idC)⊗ id⊤

)

Problem (technical nightmare of linear categories)

There has been no graphical calculi for linear categories for 38 years.
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The ℓ-calculus

Example (1/2)

⊥[x], ⊥[y] ⊣⊢ ⊥[ŷ] ⊗ ⊥[x̂] ⊥[z] ⊗ ⊥[w] ⊣⊢ ⊥[ŵ] ⊗ ⊥[ẑ]

⊥[x], ⊥[y] ⊣ ς(⊥[ŷ] ⊗ ⊥[x̂], ⊥[z] ⊗ ⊥[w]) ⊢ ⊥[ŵ] ⊗ ⊥[ẑ]

↓ℓ

⊥[x], ⊥[y] ⊣ ς(⊥[ŷ], ⊥[z]), ς(⊥[x̂], ⊥[w]) ⊢ ⊥[ŵ] ⊗ ⊥[ẑ]

↓ℓ

⊥[x], ⊥[y] ⊣⊢ ⊥[ŵ] ⊗ ⊥[ẑ]
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⊥[x], ⊥[y] ⊣ ς(⊥[ŷ] ⊗ ⊥[x̂], ⊥[z] ⊗ ⊥[w]) ⊢ ⊥[ŵ] ⊗ ⊥[ẑ]
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The ℓ-calculus

Example (2/2)

⊤[x], X[r] ⊣⊢ X[q] X[p] ⊣⊢ ⊤[y] ⊗ X[o]

⊤[x], X[r] ⊣ ς(X[q], X[p]) ⊢ ⊤[y] ⊗ X[o]

↓ℓ

⊤[x], X[r] ⊣⊢ ⊤[y] ⊗ X[o]

⊤[x] ⊗ ⊤[y] ⊣⊢ ⊤[z] ⊤[x] × ⊤[y] ⊣⊢ ⊤[z]

![f] {⊤[x], ⊤[y]} ⊣⊢ ![e] {⊤[z]} X[p] × Y[r] ⊣⊢ 1
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The ℓ-calculus

The ℓ-calculus (1/2)

Our graphical calculus for linear categories – the ℓ-calculus – has

ℓ-types T – rooted trees – defined by

T := X[v] | ⊤[v] | 1 | ⊥[v] | T ⊗ T ′ | T × T ′ | T ⊸ T ′ | ![v](A){Ti}i∈I ,

where {Ti}i∈I is a finite family of ℓ-types Ti that share the same
underlying formula A;

ℓ-cuts Θ defined by

Θ := ς(T, T̂ ) | ![v]Θ (T = T̂ ),

where T is the formula underlying T ;

ℓ-sequents F – rooted trees – of the form

T1, T2, . . . , Tn ⊣ Θ1,Θ2, . . . ,Θm ⊢ T0,

and its ℓ-slice F (C) for a choice C of × – marked as •×◦ or ◦×•,
where leaves of F or F (C) are O- vs. P-, and joker if on ⊤ or !;

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 8 / 17



The ℓ-calculus

The ℓ-calculus (1/2)

Our graphical calculus for linear categories – the ℓ-calculus – has

ℓ-types T – rooted trees – defined by

T := X[v] | ⊤[v] | 1 | ⊥[v] | T ⊗ T ′ | T × T ′ | T ⊸ T ′ | ![v](A){Ti}i∈I ,

where {Ti}i∈I is a finite family of ℓ-types Ti that share the same
underlying formula A;

ℓ-cuts Θ defined by

Θ := ς(T, T̂ ) | ![v]Θ (T = T̂ ),

where T is the formula underlying T ;

ℓ-sequents F – rooted trees – of the form

T1, T2, . . . , Tn ⊣ Θ1,Θ2, . . . ,Θm ⊢ T0,

and its ℓ-slice F (C) for a choice C of × – marked as •×◦ or ◦×•,
where leaves of F or F (C) are O- vs. P-, and joker if on ⊤ or !;

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 8 / 17



The ℓ-calculus

The ℓ-calculus (1/2)

Our graphical calculus for linear categories – the ℓ-calculus – has

ℓ-types T – rooted trees – defined by

T := X[v] | ⊤[v] | 1 | ⊥[v] | T ⊗ T ′ | T × T ′ | T ⊸ T ′ | ![v](A){Ti}i∈I ,

where {Ti}i∈I is a finite family of ℓ-types Ti that share the same
underlying formula A;

ℓ-cuts Θ defined by

Θ := ς(T, T̂ ) | ![v]Θ (T = T̂ ),

where T is the formula underlying T ;

ℓ-sequents F – rooted trees – of the form

T1, T2, . . . , Tn ⊣ Θ1,Θ2, . . . ,Θm ⊢ T0,

and its ℓ-slice F (C) for a choice C of × – marked as •×◦ or ◦×•,
where leaves of F or F (C) are O- vs. P-, and joker if on ⊤ or !;

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 8 / 17



The ℓ-calculus

The ℓ-calculus (1/2)

Our graphical calculus for linear categories – the ℓ-calculus – has

ℓ-types T – rooted trees – defined by

T := X[v] | ⊤[v] | 1 | ⊥[v] | T ⊗ T ′ | T × T ′ | T ⊸ T ′ | ![v](A){Ti}i∈I ,

where {Ti}i∈I is a finite family of ℓ-types Ti that share the same
underlying formula A;

ℓ-cuts Θ defined by

Θ := ς(T, T̂ ) | ![v]Θ (T = T̂ ),

where T is the formula underlying T ;

ℓ-sequents F – rooted trees – of the form

T1, T2, . . . , Tn ⊣ Θ1,Θ2, . . . ,Θm ⊢ T0,

and its ℓ-slice F (C) for a choice C of × – marked as •×◦ or ◦×•,
where leaves of F or F (C) are O- vs. P-, and joker if on ⊤ or !;

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 8 / 17



The ℓ-calculus

The ℓ-calculus (1/2)

Our graphical calculus for linear categories – the ℓ-calculus – has

ℓ-types T – rooted trees – defined by

T := X[v] | ⊤[v] | 1 | ⊥[v] | T ⊗ T ′ | T × T ′ | T ⊸ T ′ | ![v](A){Ti}i∈I ,

where {Ti}i∈I is a finite family of ℓ-types Ti that share the same
underlying formula A;

ℓ-cuts Θ defined by

Θ := ς(T, T̂ ) | ![v]Θ (T = T̂ ),

where T is the formula underlying T ;

ℓ-sequents F – rooted trees – of the form

T1, T2, . . . , Tn ⊣ Θ1,Θ2, . . . ,Θm ⊢ T0,

and its ℓ-slice F (C) for a choice C of × – marked as •×◦ or ◦×•,

where leaves of F or F (C) are O- vs. P-, and joker if on ⊤ or !;

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 8 / 17



The ℓ-calculus

The ℓ-calculus (1/2)

Our graphical calculus for linear categories – the ℓ-calculus – has

ℓ-types T – rooted trees – defined by

T := X[v] | ⊤[v] | 1 | ⊥[v] | T ⊗ T ′ | T × T ′ | T ⊸ T ′ | ![v](A){Ti}i∈I ,

where {Ti}i∈I is a finite family of ℓ-types Ti that share the same
underlying formula A;

ℓ-cuts Θ defined by

Θ := ς(T, T̂ ) | ![v]Θ (T = T̂ ),

where T is the formula underlying T ;

ℓ-sequents F – rooted trees – of the form

T1, T2, . . . , Tn ⊣ Θ1,Θ2, . . . ,Θm ⊢ T0,

and its ℓ-slice F (C) for a choice C of × – marked as •×◦ or ◦×•,
where leaves of F or F (C) are O- vs. P-, and joker if on ⊤ or !;

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 8 / 17



The ℓ-calculus

The ℓ-calculus (2/2)

Slice graphs E : F (C) given by a set E of edges o → p from O- to
P-leaves of F (C) compatible with C consist of E and 99K, where

1 p is on ⊤ (resp. !) if so is o, and p is on X if so is o with p non-joker;
2 Alt. paths in E : F (C) are exhaustive for leaves of F (C) up to (1,×);
3 The subgraph of E : F (C) w.r.t. non-joker leaves is total and acyclic,

and said to be canonical if E is
1 Minimal w.r.t. alt. paths;
2 Maximal in joker leaves used in alt. paths;

Logical graphs – disjoint unions

τ :: F =
∐

C∈Choice×(F )

τC :: F (C)

of (mutually) consistent slice graphs

(τ :: F )(C) := τC :: F (C),

and called ℓ-graphs if the slice graphs are all canonical.
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2 Maximal in joker leaves used in alt. paths;
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The ℓ-calculus

Why slicing?

There is an ℓ-graph whose slice graphs are

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] •×◦ ⊥[ô]

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] ◦×• ⊥[ô]

and there is another ℓ-graph whose slice graphs are

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] •×◦ ⊥[ô]

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] ◦×• ⊥[ô]

They must be distinguished, but without slicing they would coincide as

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] × ⊥[ô]
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They must be distinguished, but without slicing they would coincide as

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] × ⊥[ô]
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⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] ◦×• ⊥[ô]
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⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] ◦×• ⊥[ô]
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They must be distinguished, but without slicing they would coincide as

⊥[r] × ⊥[r̂], ⊥[q] ⊸ ⊥[p] ⊣⊢ ⊥[o] × ⊥[ô]

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 10 / 17



The ℓ-calculus

Why canonicity?

There are four logical graphs

⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô] ⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô]

⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô] ⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô]

but they should all coincide. Then, only the last one is canonical.
Similarly, there are three logical graphs

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

but they must be equal. Then, only the first one is canonical.
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but they should all coincide. Then, only the last one is canonical.
Similarly, there are three logical graphs

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

but they must be equal. Then, only the first one is canonical.

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 11 / 17



The ℓ-calculus

Why canonicity?

There are four logical graphs
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but they should all coincide. Then, only the last one is canonical.
Similarly, there are three logical graphs

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

⊥[p] × ⊥[r], ⊥[o] ⊸ 1 ⊣⊢ 1

but they must be equal. Then, only the first one is canonical.
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⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô] ⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô]
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⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô] ⊤[p] ⊣⊢ ⊤[o] ⊗ ⊤[ô]
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The ℓ-calculus

The ℓ-reduction

The ℓ-reduction →ℓ transforms logical graphs by modifying ℓ-cuts.

Theorem (correctness of ℓ-reduction)

Each ℓ-graph τ0 : F0 has a finite sequence (τi−1 : Fi−1 →ℓ τi : Fi)
n
i=1 of

ℓ-reduction, and any of these sequences satisfies

1 Fn = Γ ⊣⊢ Φ if F0 = Γ ⊣ Σ ⊢ Φ;

2 τn : Fn is a unique ℓ-graph for τ0 : F0 – normal form nfℓ(τ0 : F0).

By this theorem, the ℓ-equivalence

τ : F ≃ℓ τ̂ : F̂ :⇔ nfℓ(τ : F ) = nfℓ(τ̂ : F̂ )

between ℓ-graphs is a well-defined equivalence relation.
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Picturing linear categories

Plan of the talk

1 Background and motivation

2 The ℓ-calculus

3 Picturing linear categories

4 Application
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Picturing linear categories

The initiality theorem

Theorem (a graphical initial linear category)

The ℓ-calculus forms an initial linear category.

An object is a formula in intuitionistic linear logic;

A morphism A → B is the ℓ-eq. class [τ : F ]ℓ of an ℓ-graph

τ : F = (P : TA ⊣ σ : Σ ⊢ B : TB);

The composition A
[τ :F ]ℓ−→ B

[µ:G]ℓ−→ C, where

µ : G = (Q : TB ⊣ π : Π ⊢ C : TC),

is the ℓ-eq. class of the canonical form of the logical graph

P : TA ⊣ σ : Σ,B ∪ Q : ς(TB, TB), π : Π ⊢ C : TC ;

The identity idA : A → A links pairs of corresponding leaves.
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Application

Plan of the talk

1 Background and motivation

2 The ℓ-calculus

3 Picturing linear categories

4 Application
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Application

The triple unit problem (1/2)

Corollary (the triple unit problem)

The initial linear category has just one morphism

((⊤ ⊸ ⊤) ⊸ ⊤) ⊸ ⊤ → ((⊤ ⊸ ⊤) ⊸ ⊤) ⊸ ⊤,

and just two morphisms

((X ⊸ ⊤) ⊸ ⊤) ⊸ ⊤ ⇒ ((X ⊸ ⊤) ⊸ ⊤) ⊸ ⊤.

Proof.

For the first part, there is just one ℓ-graph

((⊤[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((⊤[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 16 / 17



Application

The triple unit problem (1/2)

Corollary (the triple unit problem)

The initial linear category has just one morphism

((⊤ ⊸ ⊤) ⊸ ⊤) ⊸ ⊤ → ((⊤ ⊸ ⊤) ⊸ ⊤) ⊸ ⊤,

and just two morphisms

((X ⊸ ⊤) ⊸ ⊤) ⊸ ⊤ ⇒ ((X ⊸ ⊤) ⊸ ⊤) ⊸ ⊤.

Proof.

For the first part, there is just one ℓ-graph

((⊤[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((⊤[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 16 / 17



Application

The triple unit problem (1/2)

Corollary (the triple unit problem)

The initial linear category has just one morphism

((⊤ ⊸ ⊤) ⊸ ⊤) ⊸ ⊤ → ((⊤ ⊸ ⊤) ⊸ ⊤) ⊸ ⊤,

and just two morphisms

((X ⊸ ⊤) ⊸ ⊤) ⊸ ⊤ ⇒ ((X ⊸ ⊤) ⊸ ⊤) ⊸ ⊤.

Proof.

For the first part, there is just one ℓ-graph

((⊤[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((⊤[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 16 / 17



Application

The triple unit problem (2/2)

Proof (continued).

For the second part, there are just two ℓ-graphs

((X[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((X[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

((X[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((X[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 17 / 17



Application

The triple unit problem (2/2)

Proof (continued).

For the second part, there are just two ℓ-graphs

((X[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((X[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

((X[v] ⊸ ⊤[t]) ⊸ ⊤[s]) ⊸ ⊤[r] ⊣

⊢ ((X[u] ⊸ ⊤[q]) ⊸ ⊤[p]) ⊸ ⊤[o]

N. Yamada (CMUC) Graphical linear categories Sep 12, 2025, Aveiro 17 / 17


	Background and motivation
	The -calculus
	Picturing linear categories
	Application

