The Lawvere Condition and a unification of Malt'sev-like categories

Nelson Martins-Ferreira Polytechnic of leiria, Portugal

Portuguese Category Seminar September 11–12, 2025 — Aveiro

Theoria, Poiesis, Praxis

Ah! ser de Aveiro, como este sal!

1 - Multiplicative Graphs and Preorders

A multiplicative graph generalizes the concept of a reflexive relation, or more precisely, a preorder.

If the pair $(d, c): C_1 \to C_0 \times C_0$ is jointly monic, the multiplication m becomes unique, and the structure corresponds to an internal preorder.

In general, however, the multiplication need not be unique. We then consider **unital multiplicative graphs**, where m satisfies the two extra conditions:

$$m \circ e_1 = 1_{C_1}, \quad m \circ e_2 = 1_{C_1}$$

The Lawvere condition

Multiplicative graph

$$C_2 \xrightarrow[\stackrel{\leftarrow}{e_1}]{\stackrel{\pi_2}{\rightleftharpoons}} C_1 \xrightarrow[\stackrel{\leftarrow}{e}]{\stackrel{d}{\rightleftharpoons}} C_0$$

$$(d,e,c)$$
 reflexive graph $dm=d\pi_2,\ cm=c\pi_1$ (π_1,e_1,π_2,e_2) local product

Structure morphisms and conditions for a multiplicative graph internal to an arbitrary category C.

2/14

2 - The Lawvere Condition

The original Lawvere condition states that the forgetful functor from internal groupoids to reflexive graphs is an isomorphism.

However, this is quite a strong requirement. An equivalent but *much* weaker formulation says:

The forgetful functor from unital multiplicative graphs to reflexive graphs admits a section.

This expresses a similar principle as in the case of preorders: the multiplication is uniquely determined by the underlying reflexive structure.

 $\mathbf{Grpd} \to \mathbf{RG}$ is an iso $\mathbf{Cat} \to \mathbf{RG}$ is an iso $\mathbf{UMG} \to \mathbf{RG}$ is an iso $\mathbf{Grpd} \to \mathbf{RG}$ has a section $\mathbf{Cat} \to \mathbf{RG}$ has a section $\mathbf{UMG} \to \mathbf{RG}$ has a section

The above condtions are equivalent in any category with local products:

$$A \underset{\langle 1_A, sf \rangle}{\overset{\pi_1}{\longleftrightarrow}} A \times_B C \underset{\langle rg, 1_C \rangle}{\overset{\pi_2}{\longleftrightarrow}} C$$

$$fr = 1_B = gs$$

$$A \underset{f}{\overset{f}{\longleftrightarrow}} B \underset{g}{\overset{g}{\longleftrightarrow}} C$$

3 - The Goal: A Unified Framework

The goal of this presentation is to provide a **unifying perspective** on three important classes of categories:

- Naturally Mal'tsev categories
- Mal'tsev categories
- Weakly Mal'tsev categories

Which are defined, respectively, as:

- The Lawvere Condition holds true
- Every reflexive relation is a tolerance relation (reflexive and symmetric).
- every local product injection cospan is jointly epimorphic.

The \mathcal{M} -Kite Condition provides a unified structural framework generalizing internal categories and pregroupoids.

If the span (d,c) lies in a class \mathcal{M} and fr = $1_B = gs$, $\alpha r = \beta = \gamma s$, $d\alpha = d\beta f$, $c\gamma = c\beta g$, then there exists a unique m: $A \times_B C \to D$ such that $me_1 = \alpha$, $me_2 = \gamma$, $dm = d\gamma \pi_2$, $cm = c\alpha \pi_1$.

4 - The Three Classes via Spans

Each class of categories corresponds to a different class of spans \mathcal{M} , which must consist of spans whose legs have kernel pairs, are closed under the kernel pair construction, and include all local products.

- Naturally Mal'tsev: all spans (whose legs have kernel pairs)
- Mal'tsev: all jointly monomorphic spans (relations) whose legs have kernel pairs
- Weakly Mal'tsev: all jointly strongly monomorphic spans (strong relations) whose legs have kernel pairs.

A strong relation is a span (d, c) orthogonal to every jointly epic cospan (e_1, e_2) . The relevant notion here is a special case depending on commuting split spans (p_1, e_1, p_2, e_2) , not just on cospans, where $x = d\gamma p_2$ and $y = c\alpha p_1$.

5 - The Unifying Theorem

TFAE on any category with local products, with \mathcal{M} as before:

 $Grpd(\mathcal{M}) \to RG(\mathcal{M})$ is an iso $Cat(\mathcal{M}) \to RG(\mathcal{M})$ is an iso $\mathsf{UMG}(\mathcal{M}) \to \mathsf{RG}(\mathcal{M})$ is an iso **AssPreGrpd** $(\mathcal{M}) \rightarrow \mathsf{Span}(\mathcal{M})$ is an iso $\mathsf{PreGrpd}(\mathcal{M}) \to \mathsf{Span}(\mathcal{M})$ is an iso $Grpd(\mathcal{M}) \to RG(\mathcal{M})$ has a section $Cat(\mathcal{M}) \to RG(\mathcal{M})$ has a section $\mathsf{UMG}(\mathcal{M}) \to \mathsf{RG}(\mathcal{M})$ has a section **AssPreGrpd** $(\mathcal{M}) \rightarrow \mathsf{Span}(\mathcal{M})$ has section $\mathbf{PreGrpd}(\mathcal{M}) \to \mathbf{Span}(\mathcal{M})$ has a section Every local product is \mathcal{M} -compatible The \mathcal{M} -Kite Condition holds Every dikite with direction in \mathcal{M} is multiplicative (in a unique way).

6 - Kock Pregroupoids and the Kernel Pair Construction

A **Kock pregroupoid** is a span equipped with a partial composition $p: D(d, c) \rightarrow D$ satisfying coherence axioms that generalize difunctional relations.

For all $x, y, z \colon Z \to D$ with dx = dy and cy = cz, the following hold:

$$dp\langle x, y, z \rangle = dz, \quad cp\langle x, y, z \rangle = cx,$$

 $p\langle x, y, y \rangle = x, \quad p\langle x, x, y \rangle = y.$

The associativity-like axiom also holds:

$$p\langle p\langle u, v, x\rangle, y, z\rangle = p\langle u, v, p\langle x, y, z\rangle\rangle.$$

As in the Lawvere condition, the forgetful functor from Kock pregroupoids to spans on a given class \mathcal{M} admits a *section*.

$$D(d,c) \stackrel{p_2}{\rightleftharpoons} D(c) \xrightarrow{c_2} D$$

$$p_1 \middle| \uparrow e_1 \qquad c_1 \middle| \uparrow \Delta \qquad c \middle|$$

$$D(d) \stackrel{d_2}{\rightleftharpoons} D \xrightarrow{c} D_1$$

$$d_1 \middle| \qquad d \middle|$$

$$D \xrightarrow{d} D_0.$$

When (d, c) is a relation, this says that every such relation is difunctional.

7 – The \mathcal{M} -Kite Condition

The \mathcal{M} -Kite condition is a structural lifting property involving a span $(d,c) \in \mathcal{M}$ and a commuting split span, defined as a quadruple (p_1,e_1,p_2,e_2) satisfying $p_1e_1=1_A$, $p_2e_2=1_C$ and $e_1p_1e_2p_2=e_2p_2e_1p_1$.

For every diagram as shown, with (p_1,e_1,p_2,e_2) a commuting split span, (p_1,p_2) jointly monic, $(p_1,p_2),(d,c)\in\mathcal{M},$ $\alpha(p_1e_2p_2)=\gamma(p_2e_1p_1),\ d\alpha p_1=d\alpha p_1e_2p_2,$ $c\gamma p_2=c\gamma p_2e_1p_1$ the \mathcal{M} -Kite condition asserts that there exists a unique morphism $m\colon E\to D$ such that: $me_1=\alpha,\ me_2=\gamma,\ dm=d\gamma p_2,$ $cm=c\alpha p_1.$

The \mathcal{M} -Kite condition expresses orthogonality between a span in \mathcal{M} and a commuting split span, like a local product, without requiring the splittings (f,r) and (g,s).

8 – Why this level of generality?

Categories with limited pullbacks—such as those admitting only pullbacks along monomorphisms—arise naturally in both mathematics and applications.

A classical example is the category of differentiable manifolds, which admits pullbacks along smooth embeddings, but not all pullbacks.

Another example is the category where:

- Objects: $0, 1, \dots, 2^{64}$.
- Morphisms $n \to m$ are pairs (m, u), $u = (u_1, \ldots, u_n)$, $u_i < m$.
- Composition: $(m, u) \circ (\text{numel}(u), v)$ is (m, u(v)), in Matlab notation.

The Cosmic Paradox: Is the Universe Finite or Infinite?

Models array indexing in Matlab and Octave. Pullbacks along monos exist, but general pullbacks do not.

9 - Pullbacks and index operations in programming

This category arises naturally in the semantics of array-based programming languages like Matlab and Octave.

For example, consider the function:

$$[k, p] = ismember(f, u)$$

where:

- u is a vector with unique entries,
- f is a general index vector.

The output pair (find(k), p(k)) corresponds to projections of the pullback of f along u in the above category.

This justifies studying category-theoretic conditions like the M-Kite condition without assuming full limits, focusing instead on local products arising from split epis over the same base object.

10 - The Naturally Mal'tsev Case

Let $\mathbb C$ be a category with local products.

Main result: \mathbb{C} is of *naturally Mal'tsev type* if and only if the equivalent conditions of The Unifying Theorem hold for the class \mathcal{M}_0 of all spans whose legs have kernel pairs.

If assuming binary products and a terminal object then:

- every object in C admits a canonical Mal'tsev operation.
- every local product is also a local coproduct.

The Kite condition gives the naturally Malt'sev operation $p \colon D \times D \times D \to D$.

11 – The Mal'tsev Case

Let \mathbb{C} be a category with local products.

Main result: \mathbb{C} is of *Mal'tsev type* if and only if the equivalent conditions of the Unifying Theorem hold for the class \mathcal{M}_1 , consisting of jointly monomorphic spans whose legs admit kernel pairs.

If $\mathbb C$ has binary products and pullbacks along monomorphisms, then:

 every local product injection cospan (e₁, e₂) is jointly extremally epimorphic.

In general, we can only say that (e_1, e_2) , as part of a local product, is compatible with every jointly monic span (d, c). This defines an intermediate notion between extremal and strong epimorphism, where we require $x = d\gamma p_2$ and $y = c\alpha p_1$.

12 – The Weakly Mal'tsev Case

Let \mathbb{C} be a category with local products.

Main result: \mathbb{C} is of weakly Mal'tsev type if and only if the equivalent conditions of the Unifying Theorem hold for the class \mathcal{M}_2 : spans whose legs admit kernel pairs and are compatible with jointly epimorphic commuting split spans.

If $\mathbb C$ has finite limits, then $\mathcal M_2$ coincides with the class of *strong relations*.

As before, a span in \mathcal{M}_2 is generally not orthogonal to the class of all epimorphisms, since we must restrict to $x=d\gamma p_2$ and $y=c\alpha p_1$ in the previous orthogonality square.

The original kite diagram

fr = 1_B = gs, $\alpha r = \beta = \gamma s$. There exists at most one m: $A \times_B C \to D$ with $me_1 = \alpha$ and $me_2 = \gamma$.

This can be used to define weakly Mal'tsev objects in arbitrary categories.

13 - References

- 1 D. Bourn, M. Gran and P.-A. Jacqmin On the naturalness of Mal'tsev categories, 2021.
- 2 A. Carboni, G. M. Kelly, and R. M. Pedicchio. Some remarks on Malt'sev and Goursat categories, 1993.
- 3 Z. Janelidze and NMF. Weakly Mal'tsev Categories and Strong Relations, 2012.
- 4 NMF. On Naturally and Weakly Mal'tsev Categories. arXiv: 2508.13315, 2025.
- 5 NMF and T. Van der Linden, Categories vs. Groupoids via Generalised Mal'tsev Properties, 2014.

All references are available online.

Thank you for your attention.