Simplicial Resolutions in Model Categories and a Perspective toward Multisimplicial Constructions in Higher Categories

Fatima Maayane

XV Portuguese Category Seminar, University of Aveiro

12 September 2025

Model Categories

Idea.

- Introduced by Quillen to formalize homotopy theory in a categorical setting.
- Examples include Top, SSet, and chain complexes.
- Provide the right context for constructing simplicial resolutions.

Formal Definition

Definition

A model structure on a category C consists of:

- three classes of morphisms: weak equivalences, fibrations, cofibrations:
- two functorial factorizations, ensuring every map can be written in two canonical ways.

These satisfy the axioms of:

- Retracts: closed under retracts;
- 2-of-3: if $f, g, g \circ f$ are composable, any two weak equivalences imply the third:
- Lifting: cofibrations lift against acyclic fibrations and vice versa;
- Factorization: every map factors as cofibration-fibration or as acyclic cofibration—acyclic fibration.

Why Model Categories?

- Provide a categorical presentation of homotopy theories.
- Allow construction of derived functors and homotopy (co)limits.
- Natural framework for building simplicial and multisimplicial resolutions.

Why Simplicial Resolutions?

- Classical resolutions use projectives, but not all categories are additive (e.g., groups).
- Simplicial resolutions extend projective resolutions via simplicial kernels and resolving subcategories.
- Useful in categories like Grp, Top, SSet, and model categories.

Simplicial Kernels

Definition

Let \mathcal{C} be a category and $X, Y \in \text{Ob } \mathcal{C}$. Suppose n > 0 and a tuple of morphisms $(f_i : X \to Y)_{i \in [0,n]}$.

A simplicial kernel (or n-equalizer) of (f_i) is a pair

$$(K,(k_i:K\to X)_{i\in[0,n+1]})$$

such that:

- (i) $k_j \circ f_i = k_i \circ f_{j-1}$ for all $0 \le i < j \le n+1$;
- (ii) For any object Z with morphisms $(h_i:Z \to X)_{i \in [0,n+1]}$ satisfying $h_j \circ f_i = h_i \circ f_{j-1}$ for all i < j, there exists a unique morphism $\mu:Z \to K$ such that $\mu \circ k_i = h_i$ for all i.
 - Encodes higher coherence among face maps.
 - Constructed via a reduced limit over a specific diagram.

Resolving Subcategories

Definition

Let $\mathcal C$ be a category and $\mathcal P\subset \mathcal C$ a full subcategory. A morphism $\varphi:X\to Y$ is called $\mathcal P\text{-epic}$ if for every $P\in\operatorname{Ob}\mathcal P$ and morphism $\alpha:P\to Y$, there exists a morphism $\beta:P\to X$ such that:

$$\varphi \circ \beta = \alpha$$
.

Definition

Let $\mathcal C$ be a category. A full subcategory $\mathcal P\subset \mathcal C$ is called a *resolving* subcategory if for every object $X\in \mathrm{Ob}\ \mathcal C$, there exists a $P\in \mathcal P$ and a $\mathcal P$ -epimorphism $\varphi:P\to X$.

Step 0: Initial Object and \mathcal{P} -Epimorphism

Let $\mathcal C$ be a category with finite limits, $\mathcal P$ a resolving subcategory, and $X \in \mathcal C$.

① Choose $P_0 \in \mathcal{P}$ and a \mathcal{P} -epimorphism $f_0 : P_0 \to X$

Step 1: First Simplicial Kernel

② Construct simplicial kernel $(K_1,(k_0,k_1))$ of $f_0:P_0\to X$

• K_1 encodes relations: $f_0 \circ k_0 = f_0 \circ k_1$

Step 2: First Level Resolution

- **3** Choose $P_1 \in \mathcal{P}$ and \mathcal{P} -epimorphism $f_1 : P_1 \to \mathcal{K}_1$
- **①** Define face maps: $d_0^1 := f_1 \circ k_0$, $d_1^1 := f_1 \circ k_1$

Step 3: Second Simplicial Kernel

3 Construct simplicial kernel $(K_2, (k_0^2, k_1^2, k_2^2))$ of (d_0^1, d_1^1)

Step 4: Second Level Resolution

- **6** Choose $P_2 \in \mathcal{P}$ and \mathcal{P} -epimorphism $f_2 : P_2 \to K_2$
- Open Define face maps: $d_i^2 := f_2 \circ k_i^2$ for i = 0, 1, 2

Step 5: Inductive Construction

For $n \ge 2$:

- $\textbf{ Assume constructed } (P_{n-1} \xrightarrow{d_i^{n-1}} P_{n-2})_{i=0}^{n-1}$
- **2** Construct simplicial kernel $(K_n, (k_i^n)_{i=0}^n)$ of $(d_i^{n-1})_{i=0}^{n-1}$
- **3** Choose $P_n \in \mathcal{P}$ and \mathcal{P} -epimorphism $f_n : P_n \to K_n$
- **①** Define face maps: $d_i^n := f_n \circ k_i^n$ for i = 0, ..., n

Resulting Semi-simplicial Resolution

The construction yields:

- Semi-simplicial resolution: $((P_n)_{n\geq 0}, (d_i^n)_{0\leq i\leq n}^{n\geq 1})$
- Augmented Semi-simplicial resolution: $((P_n)_{n\geq -1}, (d_i^n)_{0\leq i\leq n}^{n\geq 0})$ where $P_{-1}:=X$ and $d_0^0:=f_0$

$$P_{n} \xrightarrow{d_{i}^{n}} P_{n-1} \xrightarrow{d_{i}^{n-1}} P_{n-2} \qquad \dots \qquad \qquad P_{2} \xrightarrow{d_{0}^{0}} P_{1} \xrightarrow{d_{0}^{1}} P_{1} \xrightarrow{d_{0}^{1}} P_{0} \xrightarrow{d_{0}^{0}} P_{-1} \xrightarrow{d_{0}^{1}} P_{0} \xrightarrow{d_{0}^{0}} P_{-1} \xrightarrow{f_{n}} K_{n} \xrightarrow{K_{n-1}} K_{n} \xrightarrow{K_{n}} K_{n} \xrightarrow{K_{n-1}} K_{n} \xrightarrow{K_{n}} K_{n} \xrightarrow{K_{n$$

From Semi-simplicial to Simplicial

- The kernel construction gives a semisimplicial object R with $R[n] = P_n$.
- Problem: it lacks degeneracies.
- Solution: define a functor F_C that freely adds degeneracies, left adjoint to the forgetful functor V_C .

Construction (idea)

• For each *n*, set

$$(F_CX)_n = \coprod_{[n]\to[k]} X_k.$$

- Each surjection $[n] \rightarrow [k]$ represents a degeneracy.
- Result: $F_C X$ is a **simplicial object** and $F_C \dashv V_C$.

Application to Resolutions

- If $P \subset C$ is a resolving subcategory closed under finite coproducts, then R semisimplicial $\mapsto F_C R$ simplicial.
- Result: F_CR is the desired **simplicial resolution** of X.

Introduction to Higher Categories

- We start from classical 1-categories: they record objects and arrows, but homotopy forces us to see arrows between arrows.
- So we move to higher morphisms: 2-morphisms, 3-morphisms, and so on.
- In a weak *n*-category, composition and units are not strict equalities; they hold up to higher equivalence, witnessed by higher cells.
- An ∞-category pushes this all the way: coherences exist at every level. A key
 model is a quasi-category, a simplicial set where all inner horns can be filled.
- Why this matters for us: simplicial resolutions already capture 1-dimensional homotopies; higher categories let us organize the higher coherences—the relations among relations that appear along a resolution.

Coherences in Higher Categories

- In higher settings, associativity and unit laws are controlled by coherence data—think Mac Lane's pentagon and triangle.
- Basic simplicial identities already encode low-level coherence via faces and degeneracies.
- But beyond that, we need extra structure to keep track of all higher compatibilities.
- This is the heart of strict vs. weak: strict equalities rarely survive homotopy-invariant settings; weak structures replace equality by equivalence with coherent fillers.
- For resolutions, this captures "syzygies of syzygies"—higher relations that generalize projective resolutions outside additive categories.

Nerves and Simplicial Models of Higher Categories

- The nerve functor sends a category C to a simplicial set N(C) whose k-simplices are chains of k composable morphisms.
- Composition becomes a horn-filling problem: filling an inner horn corresponds to choosing a composite.
- Quasi-categories require exactly those inner horn fillers, modeling $(\infty,1)$ -categories where composition and coherence are encoded simplicially.
- The Segal perspective formalizes "composition up to homotopy" via Segal maps; multi-Segal versions handle several directions at once.
- For resolutions, working inside these models means the coherences come for free from the simplicial encoding.

Ideas for Multisimplicial Resolutions — I (Inductive Multikernels)

- Goal: generalize a simplicial resolution $P_{\bullet} \to X$ to a multi-indexed object $P_{\bullet, \bullet} \to X$ (or more generally a $(\Delta^{\mathrm{op}})^n$ -diagram).
- Horizontally, build $R_{ullet} \to X$ using simplicial kernels and \mathcal{P} -epimorphisms, exactly as before.
- Vertically, for each k, apply the same kernel construction to R_k to get a vertical simplicial direction $K_{\bullet,k}^{\text{vert}}$.
- Ask that the resolving subcategory $\mathcal P$ is closed under multikernels, so these iterated limits stay inside $\mathcal P$.
- Finally, ensure that the diagonal diag $(P_{\bullet,\bullet}) \to X$ is a weak equivalence in the ambient model category.

Ideas for Multisimplicial Resolutions — II (Free Multidegeneracies & Segal)

- To add degeneracies independently in each direction, use the free multidegeneracy functor $F_C^{(n)}: \mathrm{Semi}^n C \to s^n C$, left adjoint to the forgetful $V_C^{(n)}$.
- Workflow: first build a semi-multisimplicial object via iterated kernels; then apply $F_C^{(n)}$ to obtain a full *n*-simplicial resolution.
- Impose Segal-type conditions in each direction: the Segal map from $P_{k,...}$ to the iterated fiber product of $P_{1,...}$ over $P_{0,...}$ should be a weak equivalence,

$$P_{k,\dots} \longrightarrow \underbrace{P_{1,\dots} \times_{P_{0,\dots}} \cdots \times_{P_{0,\dots}} P_{1,\dots}}_{k \text{ times}}.$$

- This enforces compositional coherence across directions.
- Outlook: prove homotopy invariance and uniqueness up to homotopy (e.g., via complete Segal machinery) and validate on low-dimensional test cases.

Conclusion

- Model categories provide the right context for building simplicial resolutions.
- Simplicial kernels and resolving subcategories yield semi-simplicial resolutions; free functors add degeneracies to obtain simplicial ones.
- Higher-categorical viewpoints clarify how to extend to multisimplicial resolutions that track multi-level coherences.
- Practical paths: (i) inductive multikernel constructions, (ii) free multidegeneracies with Segal-type conditions, aiming at homotopy-coherent multiresolutions.

References

- M. Tierney and W. Vogel, Simplicial Resolutions and Derived Functors, Math. Z. 111 (1969), 1–14.
- 2 S. Eilenberg and J. A. Zilber, Semi-Simplicial Complexes and Singular Homology, Ann. Math. 51(3) (1950), 499–513.
- 3 J. P. May, Simplicial Objects in Algebraic Topology, Univ. Chicago Press, 1967.
- W. G. Dwyer and D. M. Kan, Homotopy Theory and Simplicial Groupoids, Indag. Math. 46(4) (1984), 379–385.
- S. Paoli, Simplicial Methods for Higher Categories: Segal-type Models of Weak n-Categories, Springer, 2019.
- J. Lurie, Higher Topos Theory, Annals of Mathematics Studies 170, Princeton Univ. Press, 2009.
- ② E. Riehl and D. Verity, Elements of ∞-Category Theory, Cambridge Univ. Press, 2022.

Thank you for your attention!