(Weakly) protomodular objects in unital categories

Diana Rodelo

(joint work with Xabier García-Martínez, Andrea Montoli, Tim Van der Linden)

CIDMA, UAIg, Portugal

11th Setember 2025

• Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct

- Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct
- \cdot **B** protomodular object \Rightarrow **B** weakly protomodular object

- Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct
- \cdot **B** protomodular object \Rightarrow **B** weakly protomodular object \Leftarrow

- Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct
- · B protomodular object \Rightarrow B weakly protomodular object \Leftarrow
- Motivation: In Mon protomodular objs = weakly protomodular objs

- Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct
- · B protomodular object \Rightarrow B weakly protomodular object \Leftarrow
- Motivation: In Mon protomodular objs = weakly protomodular objs
 (this also happens for other unital categories besides Mon)

- Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct
- \cdot **B** protomodular object \Rightarrow **B** weakly protomodular object \Leftarrow
- Motivation: In Mon protomodular objs = weakly protomodular objs (this also happens for other unital categories besides Mon)
- Question: are protomodular objects = weakly protomodular objects in any unital category?

- Aim: Compare protomodular objects and weakly protomodular objects in unital categories and show that they are distinct
- \cdot **B** protomodular object \Rightarrow **B** weakly protomodular object
- Motivation: In Mon protomodular objs = weakly protomodular objs (this also happens for other unital categories besides Mon)
- Question: are protomodular objects = weakly protomodular objects in any unital category?
- · Answer: No (we give an example)

[Jónsson, Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame, Indiana (1947)]

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991]

[Jónsson, Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame, Indiana (1947)]
[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991]

· Def: ♥ variety (of universal algebras) is unital if it is a Jónsson-Tarski variety:

[Jónsson, Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame, Indiana (1947)]
[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991]

• **Def**: \mathbb{V} variety (of universal algebras) is **unital** if it is a **Jónsson-Tarski variety**: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x

- Def: $\mathbb V$ variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)

- Def: $\mathbb V$ variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)

- **Def**: \mathbb{V} variety (of universal algebras) is **unital** if it is a **Jónsson-Tarski variety**: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure)

- Def: $\mathbb V$ variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.

- **Def**: \mathbb{V} variety (of universal algebras) is **unital** if it is a **Jónsson-Tarski variety**: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.
- Def: $\mathbb C$ is a unital category if it is pointed $(\exists \ \mathbf 0)$, lex and $\forall X, Y$ objs in $\mathbb C$

- Def: $\mathbb V$ variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.
- Def: $\mathbb C$ is a unital category if it is pointed $(\exists \ \mathbf 0)$, lex and $\forall X, Y$ objs in $\mathbb C$

$$X \xrightarrow{\langle 1,0 \rangle} X \times Y \xleftarrow{\langle 0,1 \rangle} Y$$
 is jointly extremal-epimorphic (jee)

- Def: $\mathbb V$ variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.
- Def: $\mathbb C$ is a unital category if it is pointed $(\exists \ 0)$, lex and $\forall X, Y$ objs in $\mathbb C$

- Def: \mathbb{V} variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.
- Def: $\mathbb C$ is a unital category if it is pointed $(\exists \ \mathbf 0)$, lex and $\forall X, Y$ objs in $\mathbb C$

$$X \xrightarrow{\langle 1,0 \rangle} X \times Y \xrightarrow{\langle 0,1 \rangle} Y$$
 is jointly extremal-epimorphic (jee) \longrightarrow the mono m is an iso

[Jónsson, Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame, Indiana (1947)]
[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991]

- Def: \mathbb{V} variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.
- Def: $\mathbb C$ is a unital category if it is pointed $(\exists 0)$, lex and $\forall X, Y$ objs in $\mathbb C$

$$X \xrightarrow{\langle 1,0 \rangle} X \times Y \xrightarrow{\langle 0,1 \rangle} Y$$
 is jointly extremal-epimorphic (jee) \longrightarrow the mono m is an iso

(M subobject of $X \times Y$ which contains $X, Y \Rightarrow M \cong X \times Y$)

[Jónsson, Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame, Indiana (1947)]
[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991]

- Def: \mathbb{V} variety (of universal algebras) is unital if it is a Jónsson-Tarski variety: theory admits unique constant 0, binary operation + sth x + 0 = x = 0 + x
- · Examples:
 - variety of unital magmas ((X, +, 0) sth x + 0 = x = 0 + x)
 - Mon variety of monoids (unital magmas with + associative)
 - **Grp** variety of **groups** (monoids with more structure) etc.
- Def: $\mathbb C$ is a unital category if it is pointed $(\exists \ 0)$, lex and $\forall X, Y$ objs in $\mathbb C$

$$X \xrightarrow{\langle 1,0 \rangle} X \times Y \xrightarrow{\langle 0,1 \rangle} Y$$
 is jointly extremal-epimorphic (jee) \longrightarrow the mono m is an iso

(M subobject of $X \times Y$ which contains $X, Y \Rightarrow M \cong X \times Y$)

[BB]

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991]

[Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

• Def: $\mathbb C$ pointed and lex is a protomodular category if the Split Short Five Lemma (SS5L) holds:

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

 \cdot Def: $\mathbb C$ pointed and lex is a protomodular category if the Split Short Five Lemma

(SS5L) holds:

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

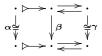
ullet Def: ${\mathbb C}$ pointed and lex is a protomodular category if the Split Short Five Lemma

(SS5L) holds:

$$lpha, \gamma$$
 isos \Rightarrow $oldsymbol{eta}$ iso

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

 \cdot Def: $\mathbb C$ pointed and lex is a protomodular category if the Split Short Five Lemma



$$\alpha, \gamma$$
 isos $\Rightarrow \beta$ iso

Main example: Grp (or objects with more structure)

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

- Def: ${\mathbb C}$ pointed and lex is a protomodular category if the Split Short Five Lemma

$$\alpha, \gamma$$
 isos $\Rightarrow \beta$ iso

Main example: Grp (or objects with more structure)
 (protomodular categories where introduced as a categorical generalisation of Grp)

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

- Def: ${\mathbb C}$ pointed and lex is a protomodular category if the Split Short Five Lemma

 α, γ isos $\Rightarrow \beta$ iso

- Main example: Grp (or objects with more structure)
 (protomodular categories where introduced as a categorical generalisation of Grp)
- Def: $\mathbb V$ pointed variety is protomodular if theory admits unique constant 0, n binary operations σ_i sth $\sigma_i(x,x)=0$, (n+1)-ary operation θ sth $\theta(\sigma_1(x,y),\cdots,\sigma_n(x,y),y)=x$

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

- Def: ${\mathbb C}$ pointed and lex is a protomodular category if the Split Short Five Lemma

(SS5L) holds:
$$\begin{array}{ccc} \cdot & & & & & \\ & & & & & \\ \alpha & & & & & \\ \hline \psi & & & & & \\ \hline \end{array}$$

$$\alpha, \gamma$$
 isos $\Rightarrow \beta$ iso

- Main example: Grp (or objects with more structure)
 (protomodular categories where introduced as a categorical generalisation of Grp)
- Def: $\mathbb V$ pointed variety is protomodular if theory admits unique constant 0, n binary operations σ_i sth $\sigma_i(x,x)=0$, (n+1)-ary operation θ sth $\theta(\sigma_1(x,y),\cdots,\sigma_n(x,y),y)=x$
- Rem: For Grp, n = 1, $\sigma(x, y) = x y$, $\theta(x, y) = x + y$

[Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math., Springer, 1991] [Bourn, Janelidze, Characterization of protomodular varieties of universal algebras, TAC (2003)]

- Def: ${\mathbb C}$ pointed and lex is a protomodular category if the Split Short Five Lemma

(SS5L) holds:
$$\begin{array}{ccc} \cdot & & & & & \\ & & & & & \\ \alpha & & & & & \\ \hline \psi & & & & & \\ \hline \end{array}$$

$$\alpha, \gamma$$
 isos $\Rightarrow \beta$ iso

- Main example: Grp (or objects with more structure)
 (protomodular categories where introduced as a categorical generalisation of Grp)
- Def: $\mathbb V$ pointed variety is protomodular if theory admits unique constant 0, n binary operations σ_i sth $\sigma_i(x,x)=0$, (n+1)-ary operation θ sth $\theta(\sigma_1(x,y),\cdots,\sigma_n(x,y),y)=x$
- Rem: For Grp , n=1, $\sigma(x,y)=x-y$, $\theta(x,y)=x+y$ $(\exists \ 0, \ \sigma(x,x)=x-x=0, \ \theta(\sigma(x,y),y)=x-y+y=x)$

• Unital variety: $\exists 0, +: x + 0 = x = 0 + x$

Protomodular variety: $\exists 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \dots, \sigma_n(x, y), y) = x$

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \mathbb{V} pointed protomodular variety $\Rightarrow \mathbb{V}$ unital

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \mathbb{V} pointed protomodular variety $\Rightarrow \mathbb{V}$ unital

 Define $x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- $\mathbb V$ pointed protomodular variety $\Rightarrow \mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$\mathbf{x} + \mathbf{y} = \theta(\sigma_1(x, \mathbf{0}), \dots, \sigma_n(x, \mathbf{0}), \mathbf{y})$$

 $\mathbf{x} + \mathbf{0} = \theta(\sigma_1(x, \mathbf{0}), \dots, \sigma_n(x, \mathbf{0}), \mathbf{0}) = \mathbf{x}$
 $\mathbf{0} + \mathbf{x} = \theta(\sigma_1(0, \mathbf{0}), \dots, \sigma_n(0, \mathbf{0}), \mathbf{x}) = \theta(\sigma_1(x, \mathbf{x}), \dots, \sigma_n(x, \mathbf{x}), \mathbf{x}) = \mathbf{x}$

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\,$ $\,$ $\,$ $\,$ pointed protomodular variety $\,$ \Rightarrow $\,$ $\,$ $\,$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

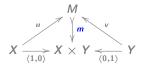
 \mathbb{C} pointed protomodular category $\Rightarrow \mathbb{C}$ unital

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

 \cdot $\mathbb C$ pointed protomodular category \Rightarrow $\mathbb C$ unital

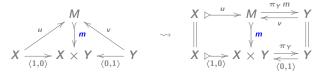


- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

 \cdot $\mathbb C$ pointed protomodular category \Rightarrow $\mathbb C$ unital

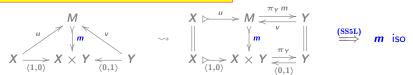


- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

 \mathbb{C} pointed protomodular category $\Rightarrow \mathbb{C}$ unital



- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

 \mathbb{C} pointed protomodular category $\Rightarrow \mathbb{C}$ unital

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

- \cdot $\mathbb C$ pointed protomodular category \Rightarrow $\mathbb C$ unital
- Rem: \mathbb{V} / \mathbb{C} unital $\Rightarrow \mathbb{V} / \mathbb{C}$ protomodular

- · Unital variety: $\exists \ 0, +: x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \cdots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

- \cdot $\mathbb C$ pointed protomodular category \Rightarrow $\mathbb C$ unital
- Rem: \mathbb{V} / \mathbb{C} unital $\Rightarrow \mathbb{V} / \mathbb{C}$ protomodular
 - Ex: Mon is unital but not protomodular

- Unital variety: $\exists \ 0, + : x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \dots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

- \cdot \mathbb{C} pointed protomodular category \Rightarrow \mathbb{C} unital
- Rem: \mathbb{V}/\mathbb{C} unital $\Rightarrow \mathbb{V}/\mathbb{C}$ protomodular

Ex: \mbox{Mon} is unital but \mbox{not} protomodular

$$\begin{array}{c|c} \mathbb{N} \stackrel{\langle 1,0 \rangle}{\longmapsto} \mathbb{N} \times \mathbb{N} \stackrel{\pi_2}{\rightleftharpoons} \mathbb{N} \\ \parallel & \langle +,\pi_2 \rangle \hspace{0.5cm} \middle| & \\ \mathbb{N} \stackrel{\langle +,\pi_2 \rangle}{\longmapsto} \mathbb{N} \times \mathbb{N} \stackrel{\pi_2}{\rightleftharpoons} \mathbb{N} \\ \hline \langle 1,0 \rangle & \times \mathbb{N} \stackrel{\pi_2}{\rightleftharpoons} \mathbb{N} \end{array}$$

- Unital variety: $\exists \ 0, + : x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \dots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

- \cdot $\mathbb C$ pointed protomodular category \Rightarrow $\mathbb C$ unital
- Rem: \mathbb{V} / \mathbb{C} unital $\Rightarrow \mathbb{V} / \mathbb{C}$ protomodular

Ex: \mbox{Mon} is unital but \mbox{not} protomodular

$$\langle +, \pi_2 \rangle$$
 not surjective

$$\begin{array}{c|c} \mathbb{N} & \stackrel{\langle 1,0 \rangle}{\longleftarrow} \mathbb{N} \times \mathbb{N} & \stackrel{\pi_2}{\longleftarrow} \mathbb{N} \\ \parallel & \stackrel{\langle +,\pi_2 \rangle}{\longleftarrow} \parallel & & \parallel \\ \mathbb{N} & \stackrel{\pi_2}{\longleftarrow} \mathbb{N} \times \mathbb{N} & \stackrel{\pi_2}{\longleftarrow} \mathbb{N} \end{array}$$

- · Unital variety: $\exists \ 0, + : x + 0 = x = 0 + x$ Protomodular variety: $\exists \ 0, \sigma_i, \theta : \sigma_i(x, x) = 0, \ \theta(\sigma_1(x, y), \dots, \sigma_n(x, y), y) = x$
- \cdot $\mathbb V$ pointed protomodular variety \Rightarrow $\mathbb V$ unital

Define
$$x + y = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), y)$$

 $x + 0 = \theta(\sigma_1(x, 0), \dots, \sigma_n(x, 0), 0) = x$
 $0 + x = \theta(\sigma_1(0, 0), \dots, \sigma_n(0, 0), x) = \theta(\sigma_1(x, x), \dots, \sigma_n(x, x), x) = x$

- \cdot $\mathbb C$ pointed protomodular category \Rightarrow $\mathbb C$ unital
- Rem: \mathbb{V} / \mathbb{C} unital $\Rightarrow \mathbb{V} / \mathbb{C}$ protomodular

Ex: \mbox{Mon} is unital but \mbox{not} protomodular

$$\langle +, \pi_2 \rangle$$
 not surjective

$$\mathbb{N} \stackrel{\langle 1,0 \rangle}{\rightarrowtail} \mathbb{N} \times \mathbb{N} \stackrel{\pi_2}{\rightleftharpoons} \mathbb{N} \\
\parallel \stackrel{\langle +,\pi_2 \rangle}{\downarrow} \qquad \qquad \parallel \\
\mathbb{N} \stackrel{\pi_2}{\bowtie} \mathbb{N} \times \mathbb{N} \stackrel{\pi_2}{\rightleftharpoons} \mathbb{N}$$

[BB]

· In a weaker categorical context we want to capture objects with more structure

• In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

• In a weaker categorical context we want to capture objects with more structure

Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular $(\not\Leftarrow)$

 $\boldsymbol{\cdot}$ In a weaker categorical context we want to capture objects with more structure

Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (\notin)

 We need a characterisation of protomodularity which "relies" more on properties of single objects.

• In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (\Leftarrow)

 We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!

- In a weaker categorical context we want to capture objects with more structure
 Ex: How can we distinguish a group in the category of monoids?
 Recall: Mon is unital, Grp is protomodular; unital ⇒ protomodular (#)
- We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!
- \mathbb{C} pointed is protomodular iff any point $A \underset{s}{\rightleftharpoons} B$ is strong (fs = 1)

• In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (\Leftarrow)

- We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!
 - \mathbb{C} pointed is protomodular iff any point $A \underset{s}{\rightleftharpoons} B$ is strong (fs = 1)

The pullback giving the kernel of f

$$K \mapsto \stackrel{k}{\longrightarrow} A$$
 is sth k, s are jee $0 \longrightarrow B$

• In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (\Leftarrow)

 We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!

 \mathbb{C} pointed is protomodular iff any point $A \overset{f}{\underset{s}{\rightleftharpoons}} B$ is strong (fs = 1)

The pullback giving the kernel of f

 $K \mapsto A$ is sth k, s are jee $\downarrow g$ $0 \longrightarrow B$

(think of k as inclusion)

Any subobject $M \rightarrow A$ containing K and Im(s) is sth $M \cong A$

· In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (\neq)

- · We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!
 - \mathbb{C} pointed is protomodular iff any point $A \stackrel{f}{\rightleftharpoons} B$ is strong (fs = 1)

The pullback giving the kernel of f

 $K \mapsto A$ is sth k, s are jee $\downarrow \qquad \qquad s \downarrow \downarrow f$

(think of k as inclusion)

Any subobject $M \rightarrow A$ containing K and Im(s) is sth $M \cong A$

[BB]

• In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (\Leftarrow)

- We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!
 - \mathbb{C} pointed is protomodular iff any point $A \underset{s}{\rightleftharpoons} B$ is strong (fs = 1)

The pullback giving the kernel of f

$$K \mapsto \stackrel{k}{\longrightarrow} A$$
 is sth k, s are jee $0 \longrightarrow B$

• In a weaker categorical context we want to capture objects with more structure Ex: How can we distinguish a group in the category of monoids?

Recall: **Mon** is unital, **Grp** is protomodular; unital \Rightarrow protomodular (#)

 We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!

• \mathbb{C} pointed is protomodular iff any point $A \stackrel{f}{\rightleftharpoons} B$ is strong (fs = 1)

 \mathbb{C} pointed is protomodular iff any point $A \underset{s}{\overset{f}{\rightleftharpoons}} B$ is stably strong

In a weaker categorical context we want to capture objects with more structure
 Ex: How can we distinguish a group in the category of monoids?
 Recall: Mon is unital, Grp is protomodular; unital protomodular (#)

• We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!

• \mathbb{C} pointed is protomodular iff any point $A \rightleftharpoons B$ is strong (fs = 1)

 \mathbb{C} pointed is protomodular iff any point $A \underset{\leq}{\overset{f}{\rightleftharpoons}} B$ is stably strong

In a weaker categorical context we want to capture objects with more structure
 Ex: How can we distinguish a group in the category of monoids?
 Recall: Mon is unital, Grp is protomodular; unital protomodular (#)

• We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!

• \mathbb{C} pointed is protomodular iff any point $A \underset{s}{\overset{f}{\rightleftharpoons}} B$ is strong (fs = 1)

The pullback giving the kernel of f $K \mapsto A$ is sth k, s are jee $\downarrow g$ \downarrow

 \mathbb{C} pointed is protomodular iff any point $A \stackrel{f}{\rightleftharpoons} B$ is stably strong

In a weaker categorical context we want to capture objects with more structure
 Ex: How can we distinguish a group in the category of monoids?
 Recall: Mon is unital, Grp is protomodular; unital ⇒ protomodular (#)

 We need a characterisation of protomodularity which "relies" more on properties of single objects. The SS5L is not good!

[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]

 \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- \cdot Def: $\mathbb C$ lex. B is a protomodular object when all points over B are stably strong

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- \cdot **Properties**: **B** protomodular object \Rightarrow **B** weakly protomodular object

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- \cdot **Properties**: **B** protomodular object \Rightarrow **B** weakly protomodular object
 - B weakly protomodular object

 B protomodular object

[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- · Properties: B protomodular object ⇒ B weakly protomodular object
 - B weakly protomodular object

 B protomodular object
 - \mathbb{C} 0+lex. **0** always weakly protomodular.

[BB]

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- · Properties: B protomodular object ⇒ B weakly protomodular object
 - B weakly protomodular object

 B protomodular object
 - $\mathbb C$ 0+lex. $\mathbf 0$ always weakly protomodular. $\mathbf 0$ is protomodular iff $\mathbb C$ is unital

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- \cdot **Properties**: **B** protomodular object \Rightarrow **B** weakly protomodular object
 - B weakly protomodular object

 B protomodular object
 - ${\mathbb C}$ 0+lex. ${\mathbf 0}$ always weakly protomodular. ${\mathbf 0}$ is protomodular iff ${\mathbb C}$ is unital [BB]
 - Ex: The category \mathbf{Set}_* of pointed sets is 0+lex and \mathbf{not} \mathbf{unital} : any singleton
 - $\{x\}$ is weakly protomodular but not protomodular

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- \cdot **Properties**: **B** protomodular object \Rightarrow **B** weakly protomodular object
 - B weakly protomodular object

 B protomodular object

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- · Properties: B protomodular object ⇒ B weakly protomodular object
 - B weakly protomodular object $\Rightarrow B$ protomodular object
 - $\mathbb C~$ 0+lex. $\boldsymbol{0}~$ is protomodular iff $~\mathbb C~$ is unital

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- · Properties: B protomodular object ⇒ B weakly protomodular object
 - B weakly protomodular object $\Rightarrow B$ protomodular object
 - $\mathbb C~$ 0+lex. $\boldsymbol 0~$ is protomodular iff $~\mathbb C~$ is unital
- \cdot $\mathbb C$ lex is protomudar iff all objects of $\mathbb C$ are protomodular objects

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- · Properties: B protomodular object ⇒ B weakly protomodular object
 - B weakly protomodular object $\Rightarrow B$ protomodular object
 - $\mathbb C~$ 0+lex. $\boldsymbol 0~$ is protomodular iff $~\mathbb C~$ is unital
- ${\Bbb C}$ lex is protomudar iff all objects of ${\Bbb C}$ are protomodular objects
- · Rem: Protomodularity of an object depends highly on the category where it is taken

(Weakly) protomodular objects - definition

[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- \cdot Properties: B protomodular object \Rightarrow B weakly protomodular object
 - B weakly protomodular object

 B protomodular object
 - $\mathbb C~$ 0+lex. $\boldsymbol 0~$ is protomodular iff $~\mathbb C~$ is unital
- ${\Bbb C}$ lex is protomudar iff all objects of ${\Bbb C}$ are protomodular objects
- Rem: Protomodularity of an object depends highly on the category where it is taken

 Ex: A group is a protomodular object in **Grp** (**Grp** is a protomodular category)

(Weakly) protomodular objects - definition

[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]

- \cdot Recall: $\mathbb C$ pointed is protomodular iff all points are (stably) strong
- Def: \mathbb{C} lex. B is a protomodular object when all points over B are stably strong B is a weakly protomodular object when all points over B are strong
- \cdot Properties: B protomodular object \Rightarrow B weakly protomodular object
 - B weakly protomodular object $\Rightarrow B$ protomodular object
 - $\mathbb C~$ 0+lex. $\boldsymbol 0~$ is protomodular iff $~\mathbb C~$ is unital
- ${\Bbb C}$ lex is protomudar iff all objects of ${\Bbb C}$ are protomodular objects
- · Rem: Protomodularity of an object depends highly on the category where it is taken
- Ex: A group is a protomodular object in **Grp** (**Grp** is a protomodular category)

A group is a protomodular object in the category of unital magmas only if it is $\ 0$

[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]

 $[\mathsf{Garc}(\mathsf{ia}\mathsf{-}\mathsf{Mart}(\mathsf{inez},\ A\ \mathsf{new}\ \mathsf{character} \mathsf{isation}\ \mathsf{of}\ \mathsf{groups}\ \mathsf{amongst}\ \mathsf{monoids},\ \mathsf{ACS}\ (2017)]$

[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]

[Clementino, Martins-Ferreira, Montoli, On the categorical behaviour of preordred groups, JPPA (2019)]

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categorical behaviour of preordred groups, JPPA (2019)]
```

• Examples: - (weakly) protomodular objects in Mon are groups

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categroical behaviour of preordred groups, JPPA (2019)]
```

- Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categorical behaviour of preordred groups, JPPA (2019)]
```

- Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings
 - (weakly) protomodular objects in the category of cocommutative bialgebras over an algebraically closed field are cocommutative Hopf algebras

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categorical behaviour of preordred groups, JPPA (2019)]
```

- Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings
 - (weakly) protomodular objects in the category of cocommutative bialgebras over an algebraically closed field are cocommutative Hopf algebras
 - (weakly) protomodular objects in **OrdGrp** are ordered groups (B, \sim) , \sim equiv.

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categroical behaviour of preordred groups, JPPA (2019)]
```

- Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings
 - (weakly) protomodular objects in the category of cocommutative bialgebras over an algebraically closed field are cocommutative Hopf algebras
 - (weakly) protomodular objects in OrdGrp are ordered groups (B,\sim) , \sim equiv.
- Rem: All the above are unital categories

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categroical behaviour of preordred groups, JPPA (2019)]
```

- · Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings
 - (weakly) protomodular objects in the category of cocommutative bialgebras over an algebraically closed field are cocommutative Hopf algebras
 - (weakly) protomodular objects in OrdGrp are ordered groups (B,\sim) , \sim equiv.
- · Rem: All the above are unital categories
- Question: \mathbb{C} unital: protomodular objects = weakly protomodular objects?

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categroical behaviour of preordred groups, JPPA (2019)]
```

- Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings
 - (weakly) protomodular objects in the category of cocommutative bialgebras over an algebraically closed field are cocommutative Hopf algebras
 - (weakly) protomodular objects in OrdGrp are ordered groups (B,\sim) , \sim equiv.
- Rem: All the above are unital categories
- Question: \mathbb{C} unital: protomodular objects = weakly protomodular objects?
- Recall: In Set_* any $\{x\} = 0$ is weakly protomodular, but **not** protomodular

```
[MRVdL, Two characterisations of groups amongst monoids, JPAA (2018)]
[García-Martínez, A new characterisation of groups amongst monoids, ACS (2017)]
[García-Martínez, Van der Linden, A note on split extensions of bialgebras, Forum Math. (2018)]
[Clementino, Martins-Ferreira, Montoli, On the categroical behaviour of preordred groups, JPPA (2019)]
```

- Examples: (weakly) protomodular objects in Mon are groups
 - (weakly) protomodular objects in SRng are rings
 - (weakly) protomodular objects in the category of cocommutative bialgebras over an algebraically closed field are cocommutative Hopf algebras
 - (weakly) protomodular objects in OrdGrp are ordered groups (B,\sim) , \sim equiv.
- · Rem: All the above are unital categories
- Question: \mathbb{C} unital: protomodular objects = weakly protomodular objects?
- Recall: In \mathbf{Set}_* any $\{x\} = \mathbf{0}$ is weakly protomodular, but **not** protomodular However. \mathbf{Set}_* is **not unital**

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

• The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409,19076]

- The answer to the question in NO. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$

 - (2) $x \setminus (x * y) = y$
 - (3) x * e = x = e * x

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409,19076]

- The answer to the question in NO. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$
 - (2) $x \setminus (x * y) = y$
 - (3) x * e = x = e * x
 - \Rightarrow (4) $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is unital (by (3)) and protomodular

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is unital (by (3)) and protomodular

[BB]

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is **unital** (by **(3)**) and protomodular Weakly protomodular objects = protomodular objects

[BB]

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is **unital** (by **(3)**) and protomodular

[BB]

Weakly protomodular objects = protomodular objects \rightsquigarrow Weaken this notion

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(X, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is **unital** (by **(3)**) and protomodular

Weakly protomodular objects = protomodular objects \rightsquigarrow Weaken this notion

• Def: LPM (=left pseudocancellative unital magma): $(X, *, \setminus, e)$ sth (1) and (3)

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(Q, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$
 - Obs: The variety of left loops is **unital** (by **(3)**) and protomodular

 Weakly protomodular objects = protomodular objects \rightsquigarrow Weaken this notion
- Def: LPM (=left pseudocancellative unital magma): $(X, *, \setminus, e)$ sth (1) and (3)

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(Q, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$
 - Obs: The variety of left loops is **unital** (by **(3)**) and protomodular

 [BB]

 Weakly protomodular objects = protomodular objects \rightsquigarrow Weaken this notion
- Def: LPM (=left pseudocancellative unital magma): $(X, *, \setminus, e)$ sth (1) and (3) $x \setminus y = x \setminus y' \Rightarrow x * (x \setminus y) = x * (x \setminus y') \stackrel{(1)}{\Rightarrow} y = y'$ (left cancellative wrt \setminus)

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

- The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object
- Def: Left loop: $(Q, *, \setminus, e)$ sth (1) $x * (x \setminus y) = y$ (2) $x \setminus (x * y) = y$ (3) x * e = x = e * x $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is **unital** (by **(3)**) and protomodular

Weakly protomodular objects = protomodular objects \rightsquigarrow Weaken this notion

- Def: LPM (=left pseudocancellative unital magma): $(X, *, \setminus, e)$ sth (1) and (3) $x \setminus y = x \setminus y' \Rightarrow x * (x \setminus y) = x * (x \setminus y') \stackrel{(1)}{\Rightarrow} y = y'$ (left cancellative wrt \setminus)
- Rem: The variety $\mathbb{L}PM$ of LPMs is unital (by (3)).

[G-MMRVdL, A comparison between weakly protomodular and protomodular objects in unital categories, arXiv:2409.19076]

• The answer to the question in **NO**. We give an example of a unital category and a weakly protomodular object which is not a protomodular object

• Def: Left loop:
$$(Q, *, \setminus, e)$$
 sth (1) $x * (x \setminus y) = y$
 (2) $x \setminus (x * y) = y$
 (3) $x * e = x = e * x$
 $\Rightarrow (4)$ $x \setminus x \stackrel{(3)}{=} x \setminus (x * e) \stackrel{(2)}{=} e$

Obs: The variety of left loops is **unital** (by **(3)**) and protomodular

Weakly protomodular objects = protomodular objects \rightsquigarrow Weaken this notion

- Def: LPM (=left pseudocancellative unital magma): $(X, *, \setminus, e)$ sth (1) and (3) $x \setminus y = x \setminus y' \Rightarrow x * (x \setminus y) = x * (x \setminus y') \stackrel{(1)}{\Rightarrow} y = y'$ (left cancellative wrt \setminus)
- Rem: The variety LPM of LPMs is unital (by (3)). LPM is not protomodular: there exists an LPM which is not a protomodular object in LPM (next slide)

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

(5)
$$x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

(5)
$$x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

• Examples: - Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

$$(5) x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - $(\mathbb{N}, *, \setminus, 0)$ is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \backslash y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

(5)
$$x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - $(\mathbb{N}, *, \setminus, 0)$ is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

(5)
$$x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in LPM (by (4) $x \setminus x = e$)
 - $(\mathbb{N}, *, \setminus, 0)$ is **not weak protomodular object** in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

• Thm: In LPM the subalgebras of protomodular objects are weakly protomodular

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \cdots, x_n \in X$:

$$(5) x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - ($\mathbb{N}, *, \setminus, 0$) is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

$$(5) x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - $(\mathbb{N}, *, \setminus, 0)$ is **not weak protomodular object** in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \backslash y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x, y > 0 \\ y & \text{if } x > 0 > y \\ \frac{-y - 1}{2} & \text{if } x < 0, y \text{ odd} \\ \frac{y}{2} & \text{if } x < 0 \neq y \text{ even} \end{cases} \qquad x \backslash y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \text{ and } y \geqslant 0 \\ y & \text{if } x > 0 > y \\ -2y - 1 & \text{if } x < 0 \leqslant y \\ 2y & \text{if } x, y < 0 \text{ and } x \neq y \\ 0 & \text{if } x = y < 0 \end{cases}$$

$$0 = \begin{cases} x \setminus x & \text{if } x \leq 0 \\ (-2x - 1) \setminus (-1 \setminus x) & \text{if } x > 0 \end{cases}$$

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \cdots, x_n \in X$:

$$(5) x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - ($\mathbb{N}, *, \setminus, 0$) is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \cdots, x_n \in X$:

$$(5) x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - ($\mathbb{N}, *, \setminus, 0$) is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x, y > 0 \\ y & \text{if } x > 0 > y \\ \frac{-y - 1}{2} & \text{if } x < 0, y \text{ odd} \\ \frac{y}{2} & \text{if } x < 0 \neq y \text{ even} \end{cases}$$

$$x \backslash y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \text{ and } y \geqslant 0 \\ y & \text{if } x > 0 > y \\ -2y - 1 & \text{if } x < 0 \leqslant y \\ 2y & \text{if } x, y < 0 \text{ and } x \neq y \\ 0 & \text{if } x = y < 0 \end{cases}$$

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

(5)
$$x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - $(\mathbb{N}, *, \setminus, 0)$ is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

$$x * y = \begin{pmatrix} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x, y > 0 \\ y & \text{if } x > 0 > y \\ \frac{-y-1}{2} & \text{if } x < 0, y \text{ odd} \\ \frac{y}{2} & \text{if } x < 0 \neq y \text{ even} \end{pmatrix}$$

$$x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \text{ and } y \geqslant 0 \\ y & \text{if } x > 0 > y \\ -2y - 1 & \text{if } x < 0 \leqslant y \\ 2y & \text{if } x, y < 0 \text{ and } x \neq y \\ 0 & \text{if } x = y < 0 \end{cases}$$

 $(\mathbb{N}, *, \setminus, 0)$ subalgebra, not weakly proto

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \cdots, x_n \in X$:

$$(5) x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - $(\mathbb{N}, *, \setminus, 0)$ is **not weak protomodular object** in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x, y > 0 \\ y & \text{if } x > 0 > y \\ \frac{-y - 1}{2} & \text{if } x < 0, y \text{ odd} \\ \frac{x}{2} & \text{if } x < 0 \neq y \text{ even} \end{cases}$$

$$x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \text{ and } y \geqslant 0 \\ y & \text{if } x > 0 > y \\ -2y - 1 & \text{if } x < 0 \leqslant y \\ 2y & \text{if } x, y < 0 \text{ and } x \neq y \end{cases}$$

 $(\mathbb{N},*,\setminus,0)$ subalgebra, not weakly proto \Rightarrow $(\mathbb{Z},*,\setminus,0)$ not protomodular object

• Thm: $X \in \mathbb{L}PM$ is weakly protomodular iff $\forall x \in X, \exists x_1, \dots, x_n \in X$:

(5)
$$x_1 \setminus (x_2 \setminus \cdots (x_n \setminus x) \cdots) = e$$

- Examples: Left loops are weakly protomodular objects in $\mathbb{L}PM$ (by (4) $x \setminus x = e$)
 - ($\mathbb{N}, *, \setminus, 0$) is not weak protomodular object in $\mathbb{L}\mathsf{PM}$, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x > 0 \text{ and } y > 0 \end{cases} \qquad x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \end{cases}$$
[BB]

- \cdot Thm: In $\mathbb{L}PM$ the subalgebras of protomodular objects are weakly protomodular
- Example: $(\mathbb{Z}, *, \setminus, 0)$ is weak protomodular object in LPM, where

$$x * y = \begin{cases} x & \text{if } y = 0 \\ y & \text{if } x = 0 \\ y - 1 & \text{if } x, y > 0 \\ y & \text{if } x > 0 > y \\ \frac{-y - 1}{2} & \text{if } x < 0, y \text{ odd} \\ \frac{x}{2} & \text{if } x < 0 \neq y \text{ even} \end{cases}$$

$$x \setminus y = \begin{cases} y & \text{if } x = 0 \\ y + 1 & \text{if } x > 0 \text{ and } y \geqslant 0 \\ y & \text{if } x > 0 > y \\ -2y - 1 & \text{if } x < 0 \leqslant y \\ 2y & \text{if } x, y < 0 \text{ and } x \neq y \end{cases}$$

 $(\mathbb{N},*,\setminus,0)$ subalgebra, not weakly proto \Rightarrow $(\mathbb{Z},*,\setminus,0)$ not protomodular object