XV Portuguese Category Seminar Pushforward and ternary semidirect products in semi-abelian categories

Arnaud Duvieusart

UCLouvain - FNRS

11 September 2025

Pushforwards of short exact sequences

Given a short exact sequence

$$K \xrightarrow{k} X \xrightarrow{q} Q$$

in an abelian category, and a morphism $\varphi \colon K \to L$, taking the pushout of φ and k gives a new short exact sequence

$$\begin{array}{cccc}
K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\
\varphi \downarrow & & \downarrow f & \parallel \\
L & \xrightarrow{I} & Y & \xrightarrow{q'} & Q.
\end{array}$$

Pushforwards of short exact sequences

Given a short exact sequence

$$K \stackrel{k}{\longrightarrow} X \stackrel{q}{\longrightarrow} Q$$

in an abelian category, and a morphism $\varphi \colon K \to L$, taking the pushout of φ and k gives a new short exact sequence

$$\begin{array}{cccc} K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\ \varphi \Big| & & \Big| f & & \Big| \Big| \\ L & \xrightarrow{I} & Y & \xrightarrow{q'} & Q. \end{array}$$

However, this generally does not hold in non-abelian categories (such as **Grp**).

Split extensions in semi-abelian categories

If $\mathcal C$ is semi-abelian, then there is an equivalence between split short exact sequences and actions.

The category of B-actions is the category of $B \flat$ _-algebras, where $B \flat X$ is determined by the short exact sequence

$$B
ildap X \xrightarrow{\kappa_{B,X}} B + X \xleftarrow{[1,0]} \underset{i_B}{\longleftarrow} B.$$

Thus if

$$K \xrightarrow{k} X \xleftarrow{p} B$$

is a split exact sequence and $\varphi\colon K\to L$ is a morphism, φ can extended to a morphism of short exact sequences iff it is a morphism of B-actions.

In semi-abelian categories

Proposition (Cigoli, Mantovani, Metere)

Given a short exact sequence $K \xrightarrow{k} X \xrightarrow{q} Q$ in a semi-abelian category C, an action $\xi \colon X \triangleright L \to L$ and an X-equivariant morphism $K \xrightarrow{\varphi} L$, there exists a morphism of short exact sequences

$$\begin{array}{ccc}
K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\
\varphi \downarrow & & \downarrow_f & & \parallel \\
L & \xrightarrow{I} & Y & \xrightarrow{q'} & Q
\end{array}$$

if and only if $(\varphi \times X)^*\chi = [k, 1\rangle^*\xi : (K \times X)\flat L \to L$.

In semi-abelian categories

Proposition (Cigoli, Mantovani, Metere)

Given a short exact sequence $K \xrightarrow{k} X \xrightarrow{q} Q$ in a semi-abelian category C, an action $\xi \colon X \triangleright L \to L$ and an X-equivariant morphism $K \xrightarrow{\varphi} L$, there exists a morphism of short exact sequences

$$\begin{array}{ccc}
K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\
\varphi \downarrow & & \downarrow_f & & \parallel \\
L & \xrightarrow{I} & Y & \xrightarrow{q'} & Q
\end{array}$$

if and only if $(\varphi \rtimes X)^*\chi = [k,1\rangle^*\xi \colon (K \rtimes X)\flat L \to L$.

But (when) is it enough to ask instead that $\varphi^* \chi_L = k^* \xi$?

We define the category $SES(\mathcal{C})$ whose objects are short exact sequences and morphisms are triple

$$\begin{array}{ccc}
K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\
\varphi \downarrow & & \downarrow f & \downarrow g \\
L & \xrightarrow{I} & Y & \xrightarrow{r} & R.
\end{array}$$

We define the category $SES(\mathcal{C})$ whose objects are short exact sequences and morphisms are triple

$$\begin{array}{ccc}
K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\
\varphi \downarrow & & \downarrow f & & \downarrow g \\
L & \xrightarrow{l} & Y & \xrightarrow{r} & R.
\end{array}$$

For a fixed short exact sequence

$$(S) = K \xrightarrow{k} X \xrightarrow{q} Q,$$

pushforwards of S can be seen as the objects of the coslice category $S \setminus SES(C)$.

A couple facts about **SES**(\mathcal{C})

Fact

 $SES(\mathcal{C})$ is equivalent to the category of normal monomorphisms or epimorphisms in $Arr(\mathcal{C})$. In particular, if \mathcal{C} has finite limits and colimits then so does $SES(\mathcal{C})$.

A couple facts about SES(C)

Fact

 $\mathbf{SES}(\mathcal{C})$ is equivalent to the category of normal monomorphisms or epimorphisms in $\mathbf{Arr}(\mathcal{C})$. In particular, if \mathcal{C} has finite limits and colimits then so does $\mathbf{SES}(\mathcal{C})$.

Fact

There are two functors $\mathcal{C} \to \textbf{SES}(\mathcal{C})$, sending an object X to the sequences

$$I^{k}(X) = X \longrightarrow X \longrightarrow 0 \qquad I^{c}(X) \ 0 \longrightarrow X \longrightarrow X$$

and these functors form a chain of adjunction with the three functors $\textbf{SES}(\mathcal{C}) \to \mathcal{C}$:

$$C \dashv I^c \dashv M \dashv I^k \dashv K$$
.

The composite functor

$$S \backslash SES(C) \longrightarrow SES(C) \xrightarrow{K} C$$

admits a left adjoint, which sends L to the coproduct of S and $I^k(L)$:

$$\begin{array}{cccc} K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\ \downarrow \downarrow i_X & & & \parallel \\ T_S(L) & \xrightarrow{\lambda} & X + L & \xrightarrow{[q,0]} & Q. \end{array}$$

In particular, $L \mapsto T_S(L)$ defines a monad on C.

Proposition

The category of T_S -algebra is a coreflective subcategory of $S \setminus SES(C)$, corresponding to short exact sequences with isomorphic cokernels.

Two special cases

For $(S) = I^c(X)$, we have $T_S(L) = X \flat L$, and the algebras for this monad are just actions of X.

Two special cases

For $(S) = I^c(X)$, we have $T_S(L) = X \flat L$, and the algebras for this monad are just actions of X.

For $(S) = I^k(X)$, we have $T_S(L) = K + L$; the algebras for this monad are just morphisms from K.

Two special cases

For $(S) = I^c(X)$, we have $T_S(L) = X \flat L$, and the algebras for this monad are just actions of X.

For $(S) = I^k(X)$, we have $T_S(L) = K + L$; the algebras for this monad are just morphisms from K.

In general, T_S -algebras are formed by combining these two cases.

The decomposition of the monad

We have a diagram

which shows that $T_S(L) \simeq (X \flat L) \rtimes K$.

The decomposition of the monad

We have a diagram

$$\begin{array}{cccc}
X \flat L & \xrightarrow{\overline{\kappa}} & T_{S}(L) & \xrightarrow{\overline{p}} & K \\
\parallel & & \downarrow & & \downarrow \downarrow & \downarrow \\
X \flat L & \xrightarrow{\kappa_{X,L}} & X + L & \xrightarrow{[1,0]} & X \\
\downarrow & & & \downarrow q \\
0 & \longrightarrow & Q & \longrightarrow & Q
\end{array}$$

which shows that $T_S(L) \simeq (X \flat L) \rtimes K$. In particular, every T_{S^*} -algebra $\mathcal{E}_S^S : T_S(L) \to \mathcal{E}_S^S$

In particular, every T_S -algebra $\xi_L^S \colon T_S(L) \to L$ is determined by

The decomposition of algebras

Proposition

Two morphisms $\xi_L^X: X \triangleright L \to L$ and $\varphi: K \to L$ induce a morphism $\xi_L^S: T_S(L) \to L$, which is a T_{S} -algebra, if and only if

- ξ_L^X is an X-action
- \bullet the map $[1, \varphi \rangle \colon L \rtimes K \to L$ is X-equivariant.

Ternary semidirect product

Definition (Carrasco, Cegarra)

An object X is a ternary semidirect product of its subobjects A, B, C if

- X is the join of A, B and C in its lattice of subobjects;
- A and $A \vee B$ are normal in C;
- $\bullet \ A \wedge B = 0 = (A \vee B) \wedge C.$

Ternary semidirect product

Definition (Carrasco, Cegarra)

An object X is a ternary semidirect product of its subobjects A, B, C if

- X is the join of A, B and C in its lattice of subobjects;
- A and $A \lor B$ are normal in C;
- $\bullet \ A \wedge B = 0 = (A \vee B) \wedge C.$

In particular, $A \lor B \simeq A \rtimes B$ and $X \simeq (A \rtimes B) \rtimes C$, with the composition $A \to A \rtimes B \to (A \rtimes B) \rtimes C$ normal.

Ternary semidirect product

Definition (Carrasco, Cegarra)

An object X is a ternary semidirect product of its subobjects A, B, C if

- X is the join of A, B and C in its lattice of subobjects;
- A and $A \lor B$ are normal in C;
- $\bullet \ A \wedge B = 0 = (A \vee B) \wedge C.$

In particular, $A \lor B \simeq A \rtimes B$ and $X \simeq (A \rtimes B) \rtimes C$, with the composition $A \to A \rtimes B \to (A \rtimes B) \rtimes C$ normal.

In the categories **Grp** and **Lie**, ternary semidirect products are determined by actions $\xi_B^C, \xi_A^C, \xi_A^B$, and some additional function $C \times B \to A$, satisfying certain conditions.

Proposition (Bourn)

Let

$$\begin{array}{ccc}
K & \xrightarrow{k} & X & \xrightarrow{p} & C \\
\varphi \downarrow & & \downarrow \psi & & \downarrow \\
L & \xrightarrow{I} & Y & \xrightarrow{t} & C
\end{array}$$

be a morphism of split short exact sequences. Then the following conditions are equivalent :

- **1** φ is normal in \mathcal{C} .
- **2** (φ, ψ) is normal in $\mathbf{Pt}_{\mathcal{C}}(\mathcal{C})$.

In that case the cokernel of (φ, ψ) in $\mathbf{Pt}_{\mathcal{C}}(\mathcal{C})$ coincides with the cokernel of $|\varphi|$ in \mathcal{C} .

Thus a ternary semidirect product of A, B, C is equivalent to a short exact sequence

$$0 \longrightarrow A \stackrel{j_A}{\longrightarrow} A \rtimes B \stackrel{p_B}{\longrightarrow} B \longrightarrow 0$$

in $Act_{\mathcal{C}}(\mathcal{C})$.

Thus a ternary semidirect product of A, B, C is equivalent to a short exact sequence

$$0 \longrightarrow A \xrightarrow{j_A} A \rtimes B \xrightarrow{p_B} B \longrightarrow 0$$

in $\mathbf{Act}_{\mathcal{C}}(\mathcal{C})$. This yields a diagram

$$\begin{array}{ccccc}
A & \xrightarrow{j_A} & A \times B & \xrightarrow{p_B} & B \\
\downarrow & & \downarrow j_{A \times B} & & \downarrow j_B \\
A & \xrightarrow{a} & (A \times B) \times C & \xrightarrow{p_B \times C} & B \times C \\
\downarrow & & s_C \uparrow \downarrow p_C & & s_C \uparrow \downarrow p_C \\
0 & \longrightarrow & C & \longrightarrow & C
\end{array}$$

Thus a ternary semidirect product is also equivalent to a morphism $q: X \to B \rtimes C$, whose kernel is A and such that B and C factor through q.

Thus a ternary semidirect product is also equivalent to a morphism $q: X \to B \rtimes C$, whose kernel is A and such that B and C factor through q.

In particular, this is equivalent to a pushforward

$$\begin{array}{c|c} K[q_{\xi}] & \longrightarrow B + C & \stackrel{q_{\xi}}{\longrightarrow} B \rtimes C \\ \varphi \Big| & & \downarrow [b,c] & & \parallel \\ A & \stackrel{a}{\longrightarrow} X & \stackrel{q}{\longrightarrow} B \rtimes C. \end{array}$$

Theorem (D.)

A ternary semidirect product of A, B, C is determined by

- actions ξ_A^{C+B} : $(C+B)\flat A \to A$ and ξ_B^C : $C\flat B \to B$
- a morphism $\varphi \colon K[\xi_B^C] \to A$

such that either

- φ is (C+B)-equivariant and $(\varphi \rtimes (C+B))^*\chi = [\ker(q_{\xi}), 1\rangle^*\xi_A^{C+B}$
- ② $A \rtimes K[\xi_B^C] \to A$ is (C+B)-equivariant and $\varphi^*\chi_A = \ker(q_\xi)^*\xi_A^{C+B}$.

If $X \simeq A \rtimes (B \rtimes C)$, we have in particular

$$X \stackrel{q}{\underset{t}{\longleftarrow}} B \rtimes C \stackrel{p_C}{\underset{s_C}{\longleftarrow}} C.$$

If $X \simeq A \rtimes (B \rtimes C)$, we have in particular

$$X \stackrel{q}{\longleftarrow} B \rtimes C \stackrel{p_C}{\longleftarrow} C.$$

In fact, this makes (q,t) a split epimorphism in $\mathbf{Pt}_{\mathcal{C}}(\mathcal{C})$. Thus we have

$$\mathsf{Pt}_{B \rtimes \mathcal{C}}(\mathcal{C}) \simeq \mathsf{Pt}_{(B \rtimes \mathcal{C}, p_{\mathcal{C}}, s_{\mathcal{C}})}(\mathsf{Pt}_{\mathcal{C}}(\mathcal{C})),$$

If $X \simeq A \rtimes (B \rtimes C)$, we have in particular

$$X \stackrel{q}{\longleftarrow} B \rtimes C \stackrel{p_C}{\longleftarrow} C.$$

In fact, this makes (q,t) a split epimorphism in $\mathbf{Pt}_{\mathcal{C}}(\mathcal{C})$. Thus we have

$$\mathsf{Pt}_{B \rtimes C}(\mathcal{C}) \simeq \mathsf{Pt}_{(B \rtimes C, p_C, s_C)}(\mathsf{Pt}_C(\mathcal{C})),$$

or equivalently

$$\mathsf{Act}_{B \rtimes \mathcal{C}}(\mathcal{C}) \simeq \mathsf{Act}_{(B,\xi)}(\mathsf{Act}_{\mathcal{C}}(\mathcal{C}))$$

If $X \simeq A \rtimes (B \rtimes C)$, we have in particular

$$X \stackrel{q}{\longleftarrow} B \rtimes C \stackrel{p_C}{\longleftarrow} C.$$

In fact, this makes (q,t) a split epimorphism in $\mathbf{Pt}_{\mathcal{C}}(\mathcal{C})$. Thus we have

$$\mathsf{Pt}_{B \rtimes C}(\mathcal{C}) \simeq \mathsf{Pt}_{(B \rtimes C, p_C, s_C)}(\mathsf{Pt}_C(\mathcal{C})),$$

or equivalently

$$\mathsf{Act}_{B \rtimes \mathcal{C}}(\mathcal{C}) \simeq \mathsf{Act}_{(B,\xi)}(\mathsf{Act}_{\mathcal{C}}(\mathcal{C}))$$

Furthermore, X is then a ternary semidirect product, with

$$A \rtimes (B \rtimes C) \simeq (A \rtimes B) \rtimes C.$$

In the diagram

$$K[q_{B,C}] \longrightarrow B + C \xrightarrow{q_{\xi}} B \rtimes C$$

$$\varphi \downarrow \qquad \qquad \downarrow [b,c] \qquad \qquad \parallel$$

$$A \xrightarrow{a} X \longrightarrow B \rtimes C$$

the lower short exact sequence splits iff $\varphi = 0$.

In the diagram

$$K[q_{B,C}] \longrightarrow B + C \xrightarrow{q_{\xi}} B \rtimes C$$

$$\varphi \downarrow \qquad \qquad \downarrow [b,c] \qquad \qquad \parallel$$

$$A \xrightarrow{a} X \longrightarrow B \rtimes C$$

the lower short exact sequence splits iff $\varphi = 0$.

Thus a ternary semidirect product $(A \rtimes B) \rtimes C$ corresponds to a split extension in $\mathbf{Act}_{C}(C)$ (and is then isomorphic to $A \rtimes (B \rtimes C)$) if and only if $\varphi = 0$.

Comparing the results

Given an action ξ_L^X of X on L and $\varphi \colon K \to L$, there is a corresponding pushforward exact sequence if and only if

Version 1

- $oldsymbol{0} \varphi$ is X-equivariant
- $(\varphi \rtimes X)^*\chi = [k,1\rangle^*\xi.$

Version 2

- $\bullet \varphi^* \chi_L = k^* \xi_L^X$
- ② $[1, \varphi)$: $L \rtimes K \to L$ is X-equivariant.

Comparing the results

Given an action ξ_L^X of X on L and $\varphi \colon K \to L$, there is a corresponding pushforward exact sequence if and only if

Version 1

- $oldsymbol{\circ} \varphi$ is X-equivariant
- $(\varphi \rtimes X)^* \chi = [k, 1\rangle^* \xi.$

Version 2

- $\bullet \varphi^* \chi_L = k^* \xi_L^X$
- $\textbf{2} \ \ [1,\varphi\rangle \colon L \rtimes K \to L \text{ is X-equivariant}.$

Both versions are equivalent to the existence of a pair of maps

Proposition

There exists a monad on $\mathcal{C} \times \mathcal{C} \times \mathcal{C}$ whose algebras give the structure of ternary semidirect products.

The functor part of the monad is defined by

$$(A, B, C) \mapsto (T_S(A), C \triangleright B, C)$$

where S denotes the short exact sequence

$$K[\mu_B^C] \longrightarrow C + C \flat B \xrightarrow{[i_C, \kappa_{C,B}]} C + B.$$