

REGULARITY AND COMPLETE DISTRIBUTIVITY IN FUZZY METRIC SPACES AND FORMAL CONTEXTS

ADRIANA BALAN POLITEHNICA BUCHAREST

XV PORTUGUESE CATEGORY SEMINAR 11-12 SEPTEMBER 2025

Motivation (I)

- ► The category **Sup** of complete sup-lattices and sup-preserving maps is *-autonomous, with tensor product classifying bimorphisms.
- Various constructions for this tensor product are known [Banaschewski & Nelson 1976, Joyal & Tierney 1984, Mowatt 1968, Shmuely 1974].
- ► The nuclear/dualisable objects in **Sup** are the completely distributive complete lattices [Higgs & Rowe 1984].
- Aim: obtain quantitative versions of these results (quantale-enriched).
- ▶ Some results are already known [Eklund et al 2018, Tholen 2024].
- ► Advantage: categorical constructions/proofs; choice-free; exhibit those results for Sup which depend on 2 being self-dual.

Quantales

ightharpoonup A (commutative) quantale $\mathcal V$ is a (commutative) monoid in Sup:

```
(\mathcal{V},\vee,\perp) is a complete sup-lattice (\mathcal{V},\otimes,e) is a commutative monoid such that -\otimes- preserves arbitrary sups
```

Consequence: every $-\otimes v: \mathcal{V} \to \mathcal{V}$ has a right adjoint $[v, -]: \mathcal{V} \to \mathcal{V}$

- ▶ Typical examples
 - ightharpoonup $(2, \wedge, 1)$
 - $\qquad \qquad \bullet \quad ([0,\infty]^{op},+,0)$
 - $([0,1],\otimes,1)$, with \otimes the usual product/min/Łukasiewicz product
 - The quantale of left continuous distribution functions $\Delta = \{f : [0, \infty] \to [0, 1] \mid f(a) = \bigvee_{b \le a} f(b)\}$

${\mathcal V}$ -categories and ${\mathcal V}$ -functors

Let $\mathcal V$ be a commutative quantale. A (small) $\mathcal V$ -enriched category $\mathcal A$ consists of a set of objects, together with a $\mathcal V$ -valued relation (usually called $\mathcal V$ -hom, or $\mathcal V$ -distance, or $\mathcal V$ -metric)

$$\mathcal{A}(-,-):\mathcal{A}\times\mathcal{A}\to\mathcal{V}$$

satisfying

$$e \leq \mathcal{A}(a,a)$$
 and $\mathcal{A}(a'',a') \otimes \mathcal{A}(a',a) \leq \mathcal{A}(a'',a)$

▶ A V-enriched functor $f: A \to B$ consists of an assignment of objects $a \in A \mapsto fa \in B$ such that

$$\mathcal{A}(a',a) \leq \mathcal{B}(\mathit{fa}',\mathit{fa})$$

▶ Remark Each $\mathcal V$ category $\mathcal A$ carries an underlying order $a' \leq a \iff e \leq \mathcal A(a',a)$. The $\mathcal V$ -category $\mathcal A$ is called separated if \leq is antisymmetric. Each $\mathcal V$ -functor is monotone wrt this underlying order.

${\mathcal V}$ -categories and ${\mathcal V}$ -functors

Examples

- $\mathcal{V} = (2, \wedge, 1)$: ordered sets & monotone maps [Lawvere 1973]
- $\mathcal{V}=([0,\infty]^{op},+,0)$: (generalised) metric spaces & non-expansive maps [Lawvere 1973]
- $\mathcal{V}=\Delta$: probabilistic metric spaces (the Δ -hom $\mathcal{A}(a',a)$ evaluated at $p\in[0,1]$ can be interpreted as "probability that the distance from a' to a is less then p") & maps such that "the probability that "the distance from a' to a is less than p" is less than or equal to the "probability that the distance from fa' to fa is less than p"" [Menger 1942]

${\mathcal V}$ -categories and ${\mathcal V}$ -functors

Denote as usual by V-Cat the (2-)category of V-categories and V-functors.

Recall that V-Cat is symmetric monoidal closed:

▶ The tensor product $\mathcal{A} \otimes \mathcal{B}$ of two \mathcal{V} -categories \mathcal{A} and \mathcal{B} has as objects pairs (a, b) with $a \in \mathcal{A}$, $b \in \mathcal{B}$, and \mathcal{V} -homs

$$(\mathcal{A} \otimes \mathcal{B})((a',b'),(a,b)) = \mathcal{A}(a',a) \otimes \mathcal{B}(b',b)$$

- The unit for the tensor product is the \mathcal{V} -category $\mathbb{1}$, with one object 0 and corresponding \mathcal{V} -hom given by $\mathbb{1}(0,0)=e$.
- ► The internal hom between two \mathcal{V} -categories \mathcal{A} and \mathcal{B} is the \mathcal{V} -category of \mathcal{V} -functors $[\mathcal{A}, \mathcal{B}]$ from \mathcal{A} to \mathcal{B} , with \mathcal{V} -distances

$$[\mathcal{A},\mathcal{B}](f',f) = \bigwedge_{a} \mathcal{B}(f'a,fa)$$

\mathcal{V} -distributors

▶ A \mathcal{V} -distributor $\mathcal{A} \xrightarrow{\varphi} \mathcal{B}$ is a \mathcal{V} -functor $\varphi : \mathcal{B}^{op} \otimes \mathcal{A} \to \mathcal{V}$ (a "monotone" \mathcal{V} -valued relation)

Particular cases:
$$\begin{cases} \mathbb{1} & \xrightarrow{\varphi} \mathcal{A} & \text{contravariant presheaves} \\ \mathcal{A} & \xrightarrow{\psi} \mathbb{1} & \text{covariant presheaves} \\ \mathcal{V}\text{-valued "upsets"}) \end{cases}$$

 $ightharpoonup \mathcal{V}$ -distributors compose by "matrix multiplication": the composite $\mathcal{A} \stackrel{\varphi}{\longrightarrow} \mathcal{B} \stackrel{\psi}{\longrightarrow} \mathcal{C}$ is

$$(\psi \otimes \varphi)(c,a) = \bigvee_{b} \psi(c,b) \otimes \varphi(b,a)$$

- ▶ The identity V-distributor on a V-category A is the V-hom A(-,-)
- Denote by V-Dist the bicategory (quantaloid) of V-enriched categories, V-distributors and V-natural transformations.

\mathcal{V} -distributors

▶ V-Dist has all right extensions and liftings

$$\psi \otimes \varphi \leq \xi \quad \Longleftrightarrow \quad \psi \leq \xi \swarrow \varphi \quad \Longleftrightarrow \quad \varphi \leq \psi \searrow \xi$$

where

$$(\xi \swarrow \varphi)(c,b) = \bigwedge_a [\varphi(b,a), \xi(c,a)]$$
 and $(\psi \searrow \xi)(b,a) = \bigwedge_c [\psi(c,b), \xi(c,a)]$

These induce the triple adjunction

$$\mathcal{V}\text{-}\mathsf{Dist}(\mathcal{A},\mathcal{B})(\varphi,\psi\searrow\xi)\cong\mathcal{V}\text{-}\mathsf{Dist}(\mathcal{A},\mathcal{C})(\psi\otimes\varphi,\xi)\cong\mathcal{V}\text{-}\mathsf{Dist}(\mathcal{B},\mathcal{C})(\psi,\xi\swarrow\varphi)$$

Cocomplete \mathcal{V} -categories

Denote now by V-Sup the (2-)category of separated cocomplete V-categories and cocontinuous V-functors.

There are many equivalent descriptions of (separated) cocomplete V-categories (and correspondingly, of cocontinuous V-functors):

- ightharpoonup (Separated) \mathcal{V} -categories having all (small) colimits
- ▶ (Strict) algebras for the free cocompletion 2-monad $\mathbb D$ on $\mathcal V$ -Cat
- ▶ Injective V-categories (wrt fully faithful V-functors) [Hofmann 2006]
- ▶ Complete sup-lattices endowed with an action of the quantale \mathcal{V} (hence the notation \mathcal{V} -Sup) [Joyal & Tierney 1984]
- Algebras for the \mathcal{V} -valued powerset monad on Set [Pedicchio & Tholen 1989]

Free cocompletion 2-monad on \mathcal{V} -Cat

- Let $\mathbb{D}\mathcal{A}$ be $[\mathcal{A}^{op}, \mathcal{V}]$, the \mathcal{V} -category of contravariant presheaves on \mathcal{A} (\mathcal{V} -valued "downsets").
- ▶ The correspondence $\mathcal{A} \mapsto \mathbb{D} \mathcal{A}$ produces a monad $\mathbb{D} : \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{V}\text{-}\mathbf{Cat}$ having as unit the Yoneda embedding

$$y_{\mathcal{A}}: \mathcal{A} \to \mathbb{D}\mathcal{A} \ , \ y(a) = \mathcal{A}(-,a)$$

and multiplication the V-"union" of downsets.

▶ The action of $\mathbb D$ on a $\mathcal V$ -functor $f:\mathcal A\to\mathcal B$ is

$$\mathbb{D}f = Lan_{y_{\mathcal{A}}}(y_{\mathcal{B}} \circ f) : \mathbb{D}\mathcal{A} \to \mathbb{D}\mathcal{B}$$

Recall that each $\mathbb{D}f$ has a right adjoint which itself has a right adjoint \mathbb{D}_{\forall} :

$$\mathbb{D}\mathcal{A} \xrightarrow{\stackrel{\mathbb{D}f}{\longleftarrow} \mathbb{D}} \mathbb{D}\mathcal{B}$$

Free cocompletion 2-monad on \mathcal{V} -Cat

- ▶ ID is the free cocompletion monad on V-Cat [Kelly 1982, Stubbe 2006];
 as such, it is a Kock-Zöberlein-monad.
- ▶ A (pseudo) \mathbb{D} -algebra is a cocomplete \mathcal{V} -category \mathcal{A} , with structure provided by the left adjoint $\sup_{\mathcal{A}}$ of $y_{\mathcal{A}}$.

$$\mathcal{A} \xrightarrow{\sup_{\mathcal{A}}} \mathbb{D} \mathcal{A}$$

▶ A (pseudo) \mathbb{D} -homomorphism $f:(A, sup_A) \to (\mathcal{B}, sup_B)$ is a cocontinuous \mathcal{V} -functor.

$$\begin{array}{ccc}
\mathbb{D}\mathcal{A} & \xrightarrow{\mathbb{D}f} \mathbb{D}\mathcal{B} \\
sup_{\mathcal{A}} \downarrow & & \downarrow sup_{\mathcal{B}} \\
\mathcal{A} & \xrightarrow{f} \mathcal{B}
\end{array}$$

Tensor product of cocomplete V-categories

- Recall V-Sup, the category of separated cocomplete V-categories and cocontinuous V-functors (the category of (strict) \mathbb{D} -algebras).
- ▶ Being the free cocompletion monad, D is commutative [López Franco 2011], therefore V-Sup is symmetric monoidal closed:
 - The tensor product $\otimes_{\mathcal{V}\text{-Sup}}$ classifies bimorphisms [Banaschewski & Nelson 1976] ($\mathcal{V}=2$), [Joyal & Tierney 1984]

- ▶ The unit is $\mathbb{D}1 = \mathcal{V}$
- ▶ The internal hom is V-Sup(\mathcal{A}, \mathcal{B})

Tensor product of cocomplete V-categories

► Theorem [B 2024]

The tensor product $\mathcal{A} \otimes_{\mathcal{V}-\mathbf{Sup}} \mathcal{B}$ of two cocomplete \mathcal{V} -categories \mathcal{A}, \mathcal{B} can be obtained as the following inverter below:

$$\mathcal{A} \otimes_{\mathcal{V}\text{-Sup}} \mathcal{B} \overset{j}{\longrightarrow} \mathbb{D}(\mathcal{A} \otimes \mathcal{B}) \xrightarrow{\overset{\mathbb{D}(y_{\mathcal{A}} \otimes y_{\mathcal{B}})}{\longrightarrow}} \mathbb{D}(\mathbb{D}\mathcal{A} \otimes \mathbb{D}\mathcal{B})$$

In particular, $\mathcal{A} \otimes_{\mathcal{V}\text{-Sup}} \mathcal{B}$ is reflective in $\mathbb{D}(\mathcal{A} \otimes \mathcal{B})$.

▶ Proof sketch. The tensor product in the category of algebras for a monad is usually computed as a (reflexive) coequalizer. The monad D being KZ, the coequalizer turns into a coinverter. Applying the 3x3 lemma for (reflexive) coinverters and the duality between complete and cocomplete V-categories leads to the result.

Tensor product of cocomplete V-categories

Remarks

- This description of ⊗_{V-Sup} generalises the one for the tensor product of sup-lattices by G-ideals (down-sets of the cartesian product join-closed in either coordinate) [Shmuely 1974]
- The universal bimorphism

$$\mathcal{A} \otimes \mathcal{B} \xrightarrow{y} \mathbb{D}(\mathcal{A} \otimes \mathcal{B}) \xrightarrow{q} \mathcal{A} \otimes_{\mathcal{V}\text{-Sup}} \mathcal{B}$$

is dense and point-separating with respect to the forgetful functor V-Sup o V-Cat (where q is the reflector).

In particular, every object of $\mathcal{A} \otimes_{\mathcal{V}-\operatorname{Sup}} \mathcal{B}$ can be canonically represented as a colimit of "elementary tensors" $a \otimes_{\mathcal{V}-\operatorname{Sup}} b = q \circ y(a,b)$.

Corollary

► The monoidal structure of V-Sup restricts to the full subcategory V-CCD_{sup} (see p. 18-19)

More on the tensor product of cocomplete \mathcal{V} -categories

- ► There is a duality \mathcal{V} -Sup $\cong \mathcal{V}$ -Sup^{op}, sending \mathcal{A} to \mathcal{A}^{op} and $f: \mathcal{A} \to \mathcal{B}$ to $g^{op}: \mathcal{B}^{op} \to \mathcal{A}^{op}$, where $f \dashv g$
- ▶ In particular, $\mathcal{A}^{op} \cong \mathcal{V}\text{-}\mathsf{Sup}(\mathcal{V}, \mathcal{A}^{op}) \cong \mathcal{V}\text{-}\mathsf{Sup}(\mathcal{A}, \mathcal{V}^{op})$
- ► This implies that V-Sup is not only symmetric monoidal closed, but also *-autonomous, with dualiser V^{op}
- Consequently, the tensor product can be equivalently described using Galois connections [Eklund et al 2018, Tholen 2024]

$$\mathcal{A} \otimes_{\mathcal{V}\text{-Sup}} \mathcal{B} \cong \mathcal{V}\text{-Sup}(\mathcal{A}, \mathcal{B}^{op})^{op}$$

 $\mathcal{V}\text{-}\,\text{``Sup}$ is good food'' (R. Blute, FMCS 2022)

What about other (monoidal) features of V-Sup?

Nuclearity/dualisability

- ▶ Grothendieck introduced in Functional Analysis the concept of nuclearity for objects and morphisms, in order to mimic finite dimensionality behaviour (for objects) and matrix calculus (for arrows) [Grothendieck 1955].
- Nuclearity (nowadays called dualisability in Category Theory) can be defined in the more general context of (symmetric) monoidal closed categories [Kelly 1972, Saavedro-Rivano 1972, Kelly & Laplaza 1980, Rowe 1988].

Dualisability

▶ In a symmetric monoidal closed category, an arrow $f: \mathcal{A} \to \mathcal{B}$ is nuclear/dualisable if the associated $\mathbb{1} \to [\mathcal{A}, \mathcal{B}]$ factorises through the canonical arrow $\mathcal{B} \otimes [\mathcal{A}, \mathbb{1}] \to [\mathcal{A}, \mathcal{B}]$

$$1 \longrightarrow \mathcal{B} \otimes [\mathcal{A}, 1] \longrightarrow [\mathcal{A}, \mathcal{B}]$$

- ► An object A is nuclear/dualisable if any of the following equivalent conditions hold:
 - $ightharpoonup \mathcal{B} \otimes [\mathcal{A}, \mathcal{C}] \cong [\mathcal{A}, \mathcal{B} \otimes \mathcal{C}]$ for all \mathcal{B}, \mathcal{C}
 - $ightharpoonup \mathcal{A} \otimes [\mathcal{A}, \mathbb{1}] \cong [\mathcal{A}, \mathcal{A}]$ (that is, $id_{\mathcal{A}}$ is nuclear)

[Higgs & Rowe 1989, Kelly 1972, Kelly & Laplaza 1980]

If this is the case, then $\mathcal{A}^* = [\mathcal{A}, \mathbb{1}]$ is the dual of \mathcal{A} and there are arrows $\mathbb{1} \to \mathcal{A} \otimes \mathcal{A}^*$, $\mathcal{A}^* \otimes \mathcal{A} \to \mathbb{1}$ satisfying the usual triangular identities.

If all objects are nuclear/dualisable, the category is compact closed.

Dualisability in V-**Sup**

A cocomplete \mathcal{V} -category \mathcal{A} is completely distributive (\mathcal{V} -CCD) if the left adjoint to the Yoneda embedding (the \mathcal{V} -functor taking "suprema") has itself a left adjoint (\mathcal{V} -valued analogue of the totally below relation):

- ► More on V-CCDs:
 - ► Projective objects of *V*-Sup [Stubbe 2007]
 - ▶ Algebras for the double dualisation monad [[-, V], V] on V-Cat [Băbuş & Kurz 2016, Stubbe 2017]
 - ▶ (Separated) V-CCDs and continuous and cocontinuous V-functors form an (infinitary) variety, thus have an equational presentation [B & Kurz 2021]

Dualisability in \mathcal{V} -Sup

- ▶ Lemma [B 2024] A free cocomplete \mathcal{V} -category $\mathbb{D}\mathcal{A}$ is dualisable, with dual $\mathbb{D}(\mathcal{A}^{op})$.
- ▶ Theorem [B 2024] The dualisable objects in V-Sup are precisely the V-CCDs.
- ▶ Corollary The full subcategory of \mathcal{V} -Sup consisting of completely distributive complete \mathcal{V} -categories and cocontinuous \mathcal{V} -functors \mathcal{V} -CCD_{sup} is compact closed with respect to the tensor product and internal hom inherited from \mathcal{V} -Sup, the dual of a \mathcal{V} -CCD \mathcal{A} being \mathcal{A}^{op} .
- Question What are the nuclear arrows in V-Sup? (notice that in Sup, these are Raney's tight maps)

Dualisability in \mathcal{V} -Sup

Examples

- ▶ The free cocompletion $\mathbb{D}\mathcal{A}$ of any \mathcal{V} -category \mathcal{A} is \mathcal{V} -CCD [Lai & Zhang 2006, Stubbe 2007]
- ▶ In particular, the quantale V is itself V-CCD as a V-category,
- ▶ Retracts of free cocompletions are V-CCD (in fact, all V-CCDs arise in that way) [Stubbe 2007]
- More (explicit) examples?

Motivation (II)

► Theorem [Raney 1960, Bandelt 1980]

For a partially ordered set (A, \leq) , the following are equivalent:

- ► The Dedekind-MacNeille completion of (A, \leq) is a completely distributive complete lattice

Questions

Can the above result be generalised from ordered sets to quantale-enriched categories?

Yes (with extra assumptions on the quantale \mathcal{V})

Are there interesting applications?
 Yes (e.g. quantale-valued formal concept analysis)

Regularity

An element x of a semigroup S is called regular if there is some $y \in S$ satisfying xyx = x ("generalised inverse" for x) [Moore 1920, von Neumann 1936, Green 1951].

An arrow $f: A \to B$ in a category \mathcal{A} is called regular if there is $g: B \to A$ with $f \circ g \circ f = f$ [MacLane 1971].

Examples

- ▶ The apartness relation ∈ between a set A and its powerset $\mathcal{P}(A)$ is regular.
- Idempotent relations, in particular orders or equivalence relations, are regular.
- Any real or complex matrix M is regular ($MM^+M = M$, where M^+ is the Moore-Penrose inverse of M)

Relations, Galois connections and regularity

A relation between sets $\varphi: A \rightarrow B$ induces a covariant adjunction (axiality)

$$\mathcal{P}(A) \xrightarrow{\perp} \mathcal{P}(B) \ , \ \begin{cases} X \subseteq A \mapsto \{b \in B \mid \exists a \in X . \varphi(a, b)\} \\ Y \subseteq B \mapsto \{a \in A \mid \varphi(a, b) \Rightarrow b \in Y\} \end{cases}$$

and a contravariant adjunction (polarity)

$$\mathcal{P}(A) \xrightarrow{\perp} \mathcal{P}(B)^{op} , \begin{cases} X \subseteq A \mapsto \{b \in B \mid \forall a . a \in X \Rightarrow \varphi(a, b)\} \\ Y \subseteq B \mapsto \{a \in A \mid \forall b . b \in Y \Rightarrow \varphi(a, b)\} \end{cases}$$

between powersets.

- Conversely, each covariant or contravariant adjunction between powersets arises from a binary relation as above [Birkhoff 1940, Everett 1944, MacNeille 1937, Ore 1944]
- A relation $\varphi: A \to B$ is regular iff the complete lattice of fixed points of the induced adjunction between powersets $\mathcal{P}(A)$ and $\mathcal{P}(B)$ is completely distributive [Raney 1953], [Zaretskiĭ 1962], [Xu & Liu 2004].

Regularity in V-Dist

Regularity in V-Cat

A \mathcal{V} -distributor $\mathcal{A} \xrightarrow{\varphi} \mathcal{B}$ is regular if there exists $\mathcal{B} \xrightarrow{\psi} \mathcal{A}$ such that $\varphi = \varphi \otimes \psi \otimes \varphi$.

Equivalently, φ is regular if $\varphi = \varphi \otimes (\varphi \searrow \varphi \swarrow \varphi) \otimes \varphi$.

Idempotent V-distributors, or (left/right) adjoint V-distributors are regular.

Similar characterisation of regular distributors in terms of fixed points of induced adjunctions? Yes, see next slides.

\mathcal{V} -distributors and adjunctions

- Recall that a \mathcal{V} -distributor $\mathcal{A} \xrightarrow{\varphi} \mathcal{B}$ is a \mathcal{V} -functor $\varphi : \mathcal{B}^{op} \otimes \mathcal{A} \to \mathcal{V}$ (a "monotone" \mathcal{V} -valued relation)
- Every \mathcal{V} -distributor $\mathcal{A} \xrightarrow{\varphi} \mathcal{B}$ induces adjunctions between covariant/contravariant presheaves:
 - ► The Kan adjunctions¹

$$[\mathcal{A}^{op}, \mathcal{V}] \xrightarrow{\varphi \otimes -} [\mathcal{B}^{op}, \mathcal{V}] \qquad \qquad [\mathcal{A}, \mathcal{V}]^{op} \xrightarrow{-\otimes \varphi} [\mathcal{B}, \mathcal{V}]^{op}$$

► The Isbell adjunction

$$[\mathcal{B}^{op}, \mathcal{V}] \xrightarrow{-\searrow \varphi} [\mathcal{A}, \mathcal{V}]^{op}$$

► These adjunctions go back to [Bénabou 1973, Lambek 1966] in category theory.

¹The terminology is borrowed from [Shen & Zhang 2013].

${\mathcal V}$ -distributors and adjunctions

▶ For the Kan adjunction associated to a \mathcal{V} -distributor $\mathcal{A} \xrightarrow{\varphi} \mathcal{B}$, let $\operatorname{FixKan}(\varphi)$ denote the cocomplete \mathcal{V} -category of fixed points of the adjunction:

$$[\mathcal{A}^{op},\mathcal{V}] \xrightarrow{arphi \otimes -} [\mathcal{B}^{op},\mathcal{V}]$$

► Theorem [Lai & Shen 2018]

$$\mathsf{FixKan}(\varphi)$$
 is $\mathcal{V}\text{-}\mathsf{CCD}^{op} \Rightarrow \varphi$ is regular $\Rightarrow \mathsf{FixKan}(\varphi)$ is $\mathcal{V}\text{-}\mathsf{CCD}$

The converse implications hold for every \mathcal{V} -distributor φ iff \mathcal{V} is a Girard quantale.

- ▶ Being V-CCD and V-CCD^{op} are equivalent notions when V = 2, but not in general!
- Interpret the above result as an instance of the microcosm principle \mathcal{V} -Sup is *-autonomous, and for things to go as expected, \mathcal{V} must also be so (i.e. Girard!)

${\cal V}$ -distributors and adjunctions

For the Isbell adjunction associated to a \mathcal{V} -distributor $\mathcal{A} \xrightarrow{\varphi} \mathcal{B}$, let FixIsbell(φ) denote the cocomplete \mathcal{V} -category of fixed points of the adjunction²:

$$[\mathcal{B}^{op},\mathcal{V}] \xrightarrow{-\searrow \varphi} [\mathcal{A},\mathcal{V}]^{op}$$

- ► Formal Concept Analysis: **FixIsbell**(φ) is the concept lattice/ \mathcal{V} -category associated to the context $(\mathcal{A}, \mathcal{B}, \varphi)$
- ▶ For $\varphi = \mathcal{A}(-,-)$ is the \mathcal{V} -valued hom of a \mathcal{V} -category \mathcal{A} , FixIsbell(φ) is the Dedekind-MacNeille-Isbell completion of \mathcal{A} .

²Also known as the nucleus of φ [Pavlović & Hughes 2020].

Connecting V-CCD and regularity of V-distributors

Proposition [B 2025]

If \mathcal{V} is a Girard quantale with linear negation denoted $(-)^{\perp}$, then the Isbell completion

of a V-category A is V-CCD iff

$$\mathcal{A}^{\perp}(-,-)=(-)^{\perp}\circ\mathcal{A}(-,-)$$

is a regular \mathcal{V} -distributor.

Connecting V-CCD and regularity of V-distributors

Proof sketch

For each V-category A, the following diagram commutes [Willerton 2021]:

- ▶ The V-category of fixed points for the lower adjunction is FixIsbell(A).
- ► The \mathcal{V} -category of fixed points of the upper adjunction FixKan(\mathcal{A}^{\perp}) is \mathcal{V} -CCD iff $\mathcal{A}^{\perp}(-,-)$ is a regular \mathcal{V} -distributor.

References

- ► [B 2025]

 On the tensor product of quantale-enriched completely distributive categories arXiv2501.12014
- ► [B 2025] (in preparation)

 Isbell completion and regularity for quantale-enriched categories

Thank you for your attention!