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Motivation (I)

▶ The category Sup of complete sup-lattices and sup-preserving maps is
∗-autonomous, with tensor product classifying bimorphisms.

▶ Various constructions for this tensor product are known [Banaschewski
& Nelson 1976, Joyal & Tierney 1984, Mowatt 1968, Shmuely 1974].

▶ The nuclear/dualisable objects in Sup are the completely
distributive complete lattices [Higgs & Rowe 1984].

▶ Aim: obtain quantitative versions of these results (quantale-enriched).

▶ Some results are already known [Eklund et al 2018, Tholen 2024].

▶ Advantage: categorical constructions/proofs; choice-free; exhibit those
results for Sup which depend on 2 being self-dual.



Quantales

▶ A (commutative) quantale V is a (commutative) monoid in Sup:

(V ,∨,⊥) is a complete sup-lattice

(V ,⊗, e) is a commutative monoid such that
−⊗− preserves arbitrary sups

Consequence: every −⊗v : V → V has a right adjoint [v ,−] : V → V

▶ Typical examples

▶ (2,∧, 1)

▶ ([0,∞]op,+, 0)

▶ ([0, 1],⊗, 1), with ⊗ the usual product/min/ Lukasiewicz product

▶ The quantale of left continuous distribution functions
∆ = {f : [0,∞] → [0, 1] | f (a) =

∨
b<a f (b)}



V-categories and V-functors

▶ Let V be a commutative quantale. A (small) V-enriched category A
consists of a set of objects, together with a V-valued relation (usually
called V-hom, or V-distance, or V-metric)

A(−,−) : A ×A → V
satisfying

e ≤ A(a, a) and A(a′′, a′) ⊗A(a′, a) ≤ A(a′′, a)

▶ A V-enriched functor f : A → B consists of an assignment of objects
a ∈ A 7→ fa ∈ B such that

A(a′, a) ≤ B(fa′, fa)

▶ Remark Each V category A carries an underlying order a′ ≤ a ⇐⇒
e ≤ A(a′, a). The V-category A is called separated if ≤ is antisym-
metric. Each V-functor is monotone wrt this underlying order.



V-categories and V-functors

Examples

▶ V = (2,∧, 1): ordered sets & monotone maps [Lawvere 1973]

▶ V = ([0,∞]op,+, 0): (generalised) metric spaces & non-expansive
maps [Lawvere 1973]

▶ V = ∆: probabilistic metric spaces (the ∆-hom A(a′, a) evaluated at
p ∈ [0, 1] can be interpreted as “probability that the distance from a′ to
a is less then p”) & maps such that “the probability that “the distance
from a′ to a is less than p” is less than or equal to the “probability that
the distance from fa′ to fa is less than p”” [Menger 1942]



V-categories and V-functors

Denote as usual by V-Cat the (2-)category of V-categories and V-functors.

Recall that V-Cat is symmetric monoidal closed:

▶ The tensor product A⊗B of two V-categories A and B has as objects
pairs (a, b) with a ∈ A, b ∈ B, and V-homs

(A ⊗ B)((a′, b′), (a, b)) = A(a′, a) ⊗ B(b′, b)

▶ The unit for the tensor product is the V-category 1, with one object 0
and corresponding V-hom given by 1(0, 0) = e.

▶ The internal hom between two V-categories A and B is the V-category
of V-functors [A,B] from A to B, with V-distances

[A,B](f ′, f ) =
∧
a

B(f ′a, fa)



V-distributors

▶ A V-distributor A �φ // B is a V-functor φ : Bop ⊗ A → V
(a “monotone” V-valued relation)

Particular cases:


1

�φ // A contravariant presheaves

(V-valued “downsets”)

A �φ // 1
covariant presheaves

(V-valued “upsets”)

▶ V-distributors compose by “matrix multiplication”: the composite

A �φ // B �ψ // C is

(ψ ⊗ φ)(c , a) =
∨
b

ψ(c , b) ⊗ φ(b, a)

▶ The identity V-distributor on a V-category A is the V-hom A(−,−)

▶ Denote by V-Dist the bicategory (quantaloid) of V-enriched
categories, V-distributors and V-natural transformations.



V-distributors

▶ V-Dist has all right extensions and liftings

ψ ⊗ φ ≤ ξ ⇐⇒ ψ ≤ ξ ↙ φ ⇐⇒ φ ≤ ψ ↘ ξ

A �
φ

33↑

�ψ↘ξ

++

�
ξ

**

↙
�
ψ⊗φ

��

B
8ψ

��

↘8
ξ↙φ

ttC
where

(ξ↙φ)(c , b) =
∧

a[φ(b, a), ξ(c , a)] and (ψ↘ξ)(b, a) =
∧

c [ψ(c , b), ξ(c , a)]

▶ These induce the triple adjunction

V-Dist(A,B)(φ,ψ↘ξ) ∼= V-Dist(A, C)(ψ ⊗ φ, ξ) ∼= V-Dist(B, C)(ψ, ξ↙φ)



Cocomplete V-categories

Denote now by V-Sup the (2-)category of separated cocomplete V-categories
and cocontinuous V-functors.

There are many equivalent descriptions of (separated) cocomplete
V-categories (and correspondingly, of cocontinuous V-functors):

▶ (Separated) V-categories having all (small) colimits

▶ (Strict) algebras for the free cocompletion 2-monad D on V-Cat

▶ Injective V-categories (wrt fully faithful V-functors) [Hofmann 2006]

▶ Complete sup-lattices endowed with an action of the quantale V (hence
the notation V-Sup) [Joyal & Tierney 1984]

▶ Algebras for the V-valued powerset monad on Set [Pedicchio & Tholen
1989]



Free cocompletion 2-monad on V-Cat

▶ Let DA be [Aop,V ], the V-category of contravariant presheaves on A
(V-valued “downsets”).

▶ The correspondence A 7→ DA produces a monad D : V-Cat → V-Cat
having as unit the Yoneda embedding

yA : A → DA , y(a) = A(−, a)

and multiplication the V-”union” of downsets.

▶ The action of D on a V-functor f : A → B is

Df = LanyA(yB ◦ f ) : DA → DB
Recall that each Df has a right adjoint which itself has a right adjoint
D∀:

DA
Df //
⊥oo
⊥
D∀f

//
DB



Free cocompletion 2-monad on V-Cat

▶ D is the free cocompletion monad on V-Cat [Kelly 1982, Stubbe 2006];
as such, it is a Kock-Zöberlein-monad.

▶ A (pseudo) D-algebra is a cocomplete V-category A, with structure
provided by the left adjoint supA of yA.

A
yA

//⊥ DA
supAoo

▶ A (pseudo) D-homomorphism f : (A, supA) → (B, supB) is a
cocontinuous V-functor.

DA Df //

supA
��

DB
supB
��

A f // B



Tensor product of cocomplete V-categories

▶ Recall V-Sup, the category of separated cocomplete V-categories and
cocontinuous V-functors (the category of (strict) D-algebras).

▶ Being the free cocompletion monad, D is commutative [López Franco
2011], therefore V-Sup is symmetric monoidal closed:

▶ The tensor product ⊗V-Sup classifies bimorphisms
[Banaschewski & Nelson 1976] (V = 2), [Joyal & Tierney 1984]

A ⊗ B universal

bimorphism
//

bimorphism

''

A ⊗V-Sup B

m
orp

h
ism

��

C
▶ The unit is D1 = V

▶ The internal hom is V-Sup(A,B)



Tensor product of cocomplete V-categories

▶ Theorem [B 2024]
The tensor product A ⊗V-Sup B of two cocomplete V-categories A,B
can be obtained as the following inverter below:

A ⊗V-Sup B �
� j

// D(A ⊗ B)
D(yA⊗yB)//

⇓
D∀(yA⊗yB)

// D(DA ⊗DB)

In particular, A ⊗V-Sup B is reflective in D(A ⊗ B).

▶ Proof sketch. The tensor product in the category of algebras for a
monad is usually computed as a (reflexive) coequalizer. The monad D
being KZ, the coequalizer turns into a coinverter. Applying the 3x3
lemma for (reflexive) coinverters and the duality between complete and
cocomplete V-categories leads to the result.



Tensor product of cocomplete V-categories

Remarks

▶ This description of ⊗V-Sup generalises the one for the tensor product of
sup-lattices by G-ideals (down-sets of the cartesian product join-closed
in either coordinate) [Shmuely 1974]

▶ The universal bimorphism

A ⊗ B y
// D(A ⊗ B)

q
// A ⊗V-Sup B

is dense and point-separating with respect to the forgetful
functor V-Sup → V-Cat (where q is the reflector).

In particular, every object of A⊗V-SupB can be canonically represented
as a colimit of “elementary tensors” a⊗V-Sup b = q ◦ y(a, b).

Corollary

▶ The monoidal structure of V-Sup restricts to the full subcategory
V-CCDsup (see p. 18-19)



More on the tensor product of cocomplete V-categories

▶ There is a duality V-Sup ∼= V-Supop, sending A to Aop and f : A → B
to gop : Bop → Aop, where f ⊣ g

▶ In particular, Aop ∼= V-Sup(V ,Aop) ∼= V-Sup(A,Vop)

▶ This implies that V-Sup is not only symmetric monoidal closed, but also
∗-autonomous, with dualiser Vop

▶ Consequently, the tensor product can be equivalently described using
Galois connections [Eklund et al 2018, Tholen 2024]

A ⊗V-Sup B ∼= V-Sup(A,Bop)op

V-“Sup is good food” (R. Blute, FMCS 2022)

▶ What about other (monoidal) features of V-Sup?



Nuclearity/dualisability

▶ Grothendieck introduced in Functional Analysis the concept of
nuclearity for objects and morphisms, in order to mimic finite
dimensionality behaviour (for objects) and matrix calculus (for arrows)
[Grothendieck 1955].

▶ Nuclearity (nowadays called dualisability in Category Theory) can be
defined in the more general context of (symmetric) monoidal closed
categories [Kelly 1972, Saavedro-Rivano 1972, Kelly & Laplaza 1980,
Rowe 1988].



Dualisability

▶ In a symmetric monoidal closed category, an arrow f : A → B is
nuclear/dualisable if the associated 1 → [A,B] factorises through the
canonical arrow B ⊗ [A,1] → [A,B]

1 // B ⊗ [A,1] // [A,B]
OO

▶ An object A is nuclear/dualisable if any of the following equivalent
conditions hold:
▶ B ⊗ [A, C] ∼= [A,B ⊗ C] for all B, C
▶ A ⊗ [A,1] ∼= [A,A] (that is, idA is nuclear)

[Higgs & Rowe 1989, Kelly 1972, Kelly & Laplaza 1980]

If this is the case, then A∗ = [A,1] is the dual of A and there are
arrows 1 → A ⊗ A∗, A∗ ⊗ A → 1 satisfying the usual triangular
identities.

▶ If all objects are nuclear/dualisable, the category is compact closed.



Dualisability in V-Sup

▶ A cocomplete V-category A is completely distributive (V-CCD) if the
left adjoint to the Yoneda embedding (the V-functor taking “suprema”)
has itself a left adjoint (V-valued analogue of the totally below relation):

A oo supA
⊥
⊥

⇓A //

yA
//
DA [Stubbe 2007]

▶ More on V-CCDs:

▶ Projective objects of V-Sup [Stubbe 2007]

▶ Algebras for the double dualisation monad [[−,V ],V ] on V-Cat [Băbuş
& Kurz 2016, Stubbe 2017]

▶ (Separated) V-CCDs and continuous and cocontinuous V-functors form
an (infinitary) variety, thus have an equational presentation [B & Kurz
2021]



Dualisability in V-Sup

▶ Lemma [B 2024] A free cocomplete V-category DA is dualisable, with
dual D(Aop).

▶ Theorem [B 2024] The dualisable objects in V-Sup are precisely the
V-CCDs.

▶ Corollary The full subcategory of V-Sup consisting of completely dis-
tributive complete V-categories and cocontinuous V-functors V-CCDsup

is compact closed with respect to the tensor product and internal hom
inherited from V-Sup, the dual of a V-CCD A being Aop.

▶ Question What are the nuclear arrows in V-Sup? (notice that in Sup,
these are Raney’s tight maps)



Dualisability in V-Sup

Examples

▶ The free cocompletion DA of any V-category A is V-CCD [Lai &
Zhang 2006, Stubbe 2007]

▶ In particular, the quantale V is itself V-CCD as a V-category,

▶ Retracts of free cocompletions are V-CCD (in fact, all V-CCDs arise
in that way) [Stubbe 2007]

▶ More (explicit) examples?



Motivation (II)

▶ Theorem [Raney 1960, Bandelt 1980]

For a partially ordered set (A,≤), the following are equivalent:

▶ The Dedekind-MacNeille completion of (A,≤) is a completely distributive
complete lattice

▶ ̸≤ is a regular relation on A

▶ Questions

▶ Can the above result be generalised from ordered sets to quantale-enriched
categories?

Yes (with extra assumptions on the quantale V)

▶ Are there interesting applications?

Yes (e.g. quantale-valued formal concept analysis)



Regularity

▶ An element x of a semigroup S is called regular if there is some
y ∈ S satisfying xyx = x (“generalised inverse” for x) [Moore 1920,
von Neumann 1936, Green 1951].

An arrow f : A → B in a category A is called regular if there is
g : B → A with f ◦ g ◦ f = f [MacLane 1971].

▶ Examples

▶ The apartness relation ∈ between a set A and its powerset P(A) is
regular.

▶ Idempotent relations, in particular orders or equivalence relations, are
regular.

▶ Any real or complex matrix M is regular (MM+M = M, where M+ is
the Moore-Penrose inverse of M)



Relations, Galois connections and regularity

▶ A relation between sets φ : A ↛ B induces a covariant adjunction
(axiality)

P(A)
//

⊥oo P(B) ,

{
X ⊆ A 7→ {b ∈ B | ∃a ∈ X . φ(a, b)}
Y ⊆ B 7→ {a ∈ A | φ(a, b) ⇒ b ∈ Y }

and a contravariant adjunction (polarity)

P(A)
//

⊥oo P(B)op ,

{
X ⊆ A 7→ {b ∈ B | ∀a . a ∈ X ⇒ φ(a, b)}
Y ⊆ B 7→ {a ∈ A | ∀b . b ∈ Y ⇒ φ(a, b)}

between powersets.

▶ Conversely, each covariant or contravariant adjunction between
powersets arises from a binary relation as above [Birkhoff 1940,
Everett 1944, MacNeille 1937, Ore 1944]

▶ A relation φ : A ↛ B is regular iff the complete lattice of fixed points
of the induced adjunction between powersets P(A) and P(B) is
completely distributive [Raney 1953], [Zaretskĭı 1962], [Xu & Liu 2004].



Regularity in V-Dist

▶ Regularity in V-Cat
A V-distributor A �φ // B is regular if there exists B �ψ // A such
that φ = φ⊗ ψ ⊗ φ.

Equivalently, φ is regular if φ = φ⊗ (φ↘ φ↙ φ) ⊗ φ.

Idempotent V-distributors, or (left/right) adjoint V-distributors are
regular.

▶ Similar characterisation of regular distributors in terms of fixed points
of induced adjunctions? Yes, see next slides.



V-distributors and adjunctions

▶ Recall that a V-distributor A �φ // B is a V-functor φ : Bop⊗A → V
(a “monotone” V-valued relation)

▶ Every V-distributor A �φ // B induces adjunctions between
covariant/contravariant presheaves:

▶ The Kan adjunctions1

[Aop,V ]
φ⊗−

//
⊥oo

φ↘−
[Bop,V ] [A,V ]op

−⊗φ
//

⊥oo
−↙φ

[B,V ]op

▶ The Isbell adjunction

[Bop,V ]
−↘φ

//
⊥oo

φ↙−
[A,V ]op

▶ These adjunctions go back to [Bénabou 1973, Lambek 1966] in category
theory.

1The terminology is borrowed from [Shen & Zhang 2013].



V-distributors and adjunctions

▶ For the Kan adjunction associated to a V-distributor A �φ // B , let
FixKan(φ) denote the cocomplete V-category of fixed points of the
adjunction:

[Aop,V ]
φ⊗−

//
⊥oo

φ↘−
[Bop,V ]

▶ Theorem [Lai & Shen 2018]

FixKan(φ) is V-CCDop ⇒ φ is regular ⇒ FixKan(φ) is V-CCD

The converse implications hold for every V-distributor φ iff V is a Girard
quantale.

▶ Being V-CCD and V-CCDop are equivalent notions when V = 2, but
not in general!

▶ Interpret the above result as an instance of the microcosm principle
V-Sup is ∗-autonomous, and for things to go as expected, V must also
be so (i.e. Girard!)



V-distributors and adjunctions

▶ For the Isbell adjunction associated to a V-distributor A �φ // B , let
FixIsbell(φ) denote the cocomplete V-category of fixed points of the
adjunction2:

[Bop,V ]
−↘φ

//
⊥oo

φ↙−
[A,V ]op

▶ Formal Concept Analysis: FixIsbell(φ) is the concept lattice/V-category
associated to the context (A,B, φ)

▶ For φ = A(−,−) is the V-valued hom of a V-category A, FixIsbell(φ)
is the Dedekind-MacNeille-Isbell completion of A.

2Also known as the nucleus of φ [Pavlović & Hughes 2020].



Connecting V-CCD and regularity of V-distributors

Proposition [B 2025]

If V is a Girard quantale with linear negation denoted (−)⊥, then the Isbell
completion

FixIsbell(A)

of a V-category A is V-CCD iff

A⊥(−,−) = (−)⊥ ◦A(−,−)

is a regular V-distributor.



Connecting V-CCD and regularity of V-distributors

Proof sketch

▶ For each V-category A, the following diagram commutes [Willerton
2021]:

[Aop,V ]
A⊥⊗−

//
⊥oo

A⊥↘−
[Aop,V ]

(−)⊥

��

[Aop,V ]
−↘A

//
⊥oo

A↙−
[A,V ]op

▶ The V-category of fixed points for the lower adjunction is FixIsbell(A).

▶ The V-category of fixed points of the upper adjunction FixKan(A⊥) is
V-CCD iff A⊥(−,−) is a regular V-distributor.
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Thank you for your attention!


