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Abstract

Model categories provide a natural framework for formalizing homotopy theory within
category theory, combining cofibrations, fibrations, and weak equivalences in a unified
setting. Within this framework, simplicial resolutions emerge as categorical analogues of
projective resolutions, constructed using simplicial kernels and resolving subcategories. This
approach generalizes classical homological constructions to non-additive contexts and allows
a structured method for building simplicial objects from categorical data.

The construction of simplicial resolutions through simplicial kernels relies on a stepwise
process rooted in universal properties and categorical limits. Resolving subcategories play a
key role in replacing projective objects and ensuring the existence of appropriate morphisms
at each stage of the resolution.

This framework opens a path toward extending the theory to higher categories, where
notions of homotopy coherence become central. The formulation of multisimplicial resolutions
in higher categorical contexts represents a natural objective, aiming to capture refined
homological and homotopical information in a multidimensional setting.
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